SIMPLE RANDOM SAMPLING

PRESENTED
BY

MR. PRADIP PANDA
ASSTT. PROF., DEPTT. OF STATISTICS
SERAMPORE COLLEGE

DEFINITION:

Simple random sampling is a method of drawing a sample such that each and every unit in the population has an equal chance of being included in the sample.

SIMPLE RANDOM SAMPLING(SRS)

SRS WITH REPLACEMENT(SRSWR)

SRS WITHOUT REPLACEMENT(SRSWOR)

SRSWR

Each unit is replaced before the next drawing.

SRSWOR

Each unit is not replaced before the next drawing.

RESULTS RELATED TO SRSWR

❖ In SRSWR ,the probability that ith unit is selected at any draw

$$P(u_i) = \frac{1}{N}, \forall i$$

 \bigstar π_i is the probability that i^{th} unit is selected in the sample of size n.

$$\pi_{i} = 1 - P(i^{th} \text{ unit is not selected})$$

$$= 1 - \left[1 - \frac{1}{N}\right]^{n}$$

 \star π_{ij} is the probability that both the ith and jth unit is selected in the sample of size n.

 $\pi_{ii} = P(i^{th} \text{ unit and } j^{th} \text{ unit is selected in the sample})$ = $P(i^{th} unit is selected).P(j^{th} unit is selected)$ $= \left| 1 - \left\{ 1 - \frac{1}{N} \right\}^n \right| \left| 1 - \left\{ 1 - \frac{1}{N} \right\}^n \right|$ $= \left| 1 - \{1 - \frac{1}{N}\}^n \right|^2$

Theorem I:

In case of SRSWR, sample mean is an unbiased estimator of the population mean.

Proof:

Sample size = n and population size = N

Let Y_i be the value of the character y for the ith unit of the population.

$$\overline{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = Population mean and \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = Sample mean.$$

$$E(y_i) = \sum_{i=1}^{N} Y_i \cdot \frac{1}{N} = \overline{Y}, \forall i$$

$$E(\bar{y}) = E(\frac{1}{n} \sum_{i=1}^{n} y_i) = \frac{1}{n} \sum_{i=1}^{n} E(y_i) = \frac{1}{n} .n. \bar{Y}$$

:. Sample mean is the unbiased estimator of the population mean.

$$So, \hat{\overline{Y}} = \overline{y}$$

Corollary:

$$E(N.\overline{y}) = N.E(\overline{y}) = N.\overline{Y} = \sum_{i=1}^{N} Y_i = Y$$
, the population total.

 $\therefore \hat{Y}$ is an unbiased estimator of population total = $N.\bar{y}$

Theorem II:

The sampling variance of sample mean is given by

$$V\left(\hat{\overline{Y}}\right) = V\left(\overline{y}\right) = \frac{\sigma^2}{n};$$

where,
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \overline{Y})^2$$
 is the population variance.

Proof:

$$V(\bar{y}) = E[\{\bar{y} - E(\bar{y})\}^2]$$

$$= E[\{\bar{y} - \bar{Y}\}^2] = E[\{\frac{1}{n} \sum_{i=1}^n y_i - \bar{Y}\}^2]$$

$$= E[\{\frac{1}{n} \sum_{i=1}^n (y_i - \bar{Y})\}^2]$$

$$= \frac{1}{n^2} E[\sum_{i=1}^n (y_i - \bar{Y})^2 + \sum_{i \neq j} \sum_{j \neq i} (y_j - \bar{Y})(y_j - \bar{Y})]$$

$$= \frac{1}{n^2} [\sum_{i=1}^n E(y_i - \bar{Y})^2 + \sum_{i \neq j} \sum_{j \neq i} E(y_j - \bar{Y})(y_j - \bar{Y})]$$

$$= \frac{1}{n^2} \left[\sum_{i=1}^n E(y_i - \overline{Y})^2 + \sum_{i \neq j} E(y_i - \overline{Y})(y_j - \overline{Y}) \right]$$

$$= \frac{1}{n^2} \sum_{i=1}^n E(y_i - \overline{Y})^2 = \frac{1}{n^2} \sum_{i=1}^n \sum_{i'=1}^N (Y_{i'} - \overline{Y})^2 \cdot \frac{1}{N}$$

$$= \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{m^{\text{of Statistics, Serampore College}}}$$

Corollary:

i)
$$V(\hat{Y}) = V(N.\bar{y}) = N^2.V(\bar{y}) = \frac{N^2.\sigma^2}{n}$$

ii) The r.s.e. of
$$\overline{y} = \frac{\sqrt{V(\overline{y})}}{E(\overline{y})} = \frac{1}{\sqrt{n}} \cdot \frac{\sigma}{\overline{Y}} = \frac{C_y}{\sqrt{n}}$$
.

 C_v is the population coefficient of variation.

Theorem III: An unbiased estimator of sampling variance of sample mean is given by

$$\hat{V}(\bar{y}) = \frac{\hat{\sigma}^2}{n} = \frac{s^2}{n};$$

where
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$$
, is the sample mean square.

Proof:
$$V(\bar{y}) = \frac{\sigma^2}{n}$$

$$E(s^{2}) = \frac{1}{n-1} E\left[\sum_{i=1}^{n} y_{i}^{2} - n\overline{y}^{2}\right]$$

$$= \frac{1}{n-1} E\left[\sum_{i=1}^{n} y_i^2\right] - \frac{n}{N_{\text{II.}}} E\left(\overline{y}^2\right)$$
Mr. Pradip Panda, Asstt. Frof., Department Restatistics, Serampore College

$$= \frac{1}{n-1} \sum_{i=1}^{n} \left[\sum_{i'=1}^{N} Y_{i'}^{2} \cdot \frac{1}{N} \right] - \frac{n}{n-1} \left[\overline{Y}^{2} + \frac{\sigma^{2}}{n} \right]$$

$$= \frac{n}{n-1} \sum_{i'=1}^{N} Y_{i'}^{2} \cdot \frac{1}{N} - \frac{n}{n-1} \overline{Y}^{2} - \frac{\sigma^{2}}{n-1}$$

$$= \frac{n}{n-1} \left[\frac{1}{N} \sum_{i'=1}^{N} Y_{i'}^2 - \overline{Y}^2 \right] - \frac{\sigma^2}{n-1}$$

$$= \frac{n}{n-1}.\sigma^2 - \frac{1}{n-1}.\sigma^2 \qquad \therefore \hat{\sigma}^2 = s^2 \text{ or, } \hat{V}(\bar{y}) = \frac{\hat{\sigma}^2}{n} = \frac{s^2}{n}.$$

$$= \sigma^2$$

Corollary: Unbiased estimate of Description will be $\hat{C}(\bar{y}) = \frac{1}{\sqrt{n}} \cdot \frac{s}{\bar{y}}$.

RESULTS RELATED TO SRSWOR

❖ In SRSWOR, the probability that ith unit is selected at any draw is 1/N.

Proof:

Let U_{i1} be the event that the ith unit is drawn at the 1st draw.

 $P(U_{i1}) = 1/N$, if there are N units in the population.

 $P(U_{i2}) = P(i^{th} \text{ unit appears at the } 2^{nd} \text{ draw.})$

= P(ith unit does not appear at the 1st draw.)P(ith unit appears at the 2nd draw /ith unit does not appear at the 1st draw.)

Therefore,
$$P(U_{i2}) = (1 - 1/N)$$
. $1/(N-1) = {(N-1)/N}{1/(N-1)}$
= $1/N$

 $P(U_{ir}) = P(i^{th} \text{ unit appears at the } r^{th} \text{ draw.})$

= P(ith unit does not appear upto (r-1)th draw.)

P(ith unit appears at the rth draw /ith unit does not appear upto (r-1)th draw.)

$$= \left(1 - \frac{1}{N}\right)\left(1 - \frac{1}{N-1}\right)\left(1 - \frac{1}{N-2}\right).....\left(1 - \frac{1}{N-r+2}\right)\frac{1}{N-r+1}$$

$$= \frac{N-1}{N} \cdot \frac{N-2}{N-1} \cdot \frac{N-3}{N-2} \cdot \dots \cdot \frac{N-r+1}{N-r+2} \cdot \frac{1}{N-r+1} = \frac{1}{N}$$

Mr. Pradip Panda, Asstt. Prof., Department of Statistics, Serampore College

Here, P(U_{ir}) is independent of r.

So, in SRSWOR, the probability of drawing ith unit at any draw is 1/N.

 \star π_i is the probability that ith unit is selected in the sample of size n.

$$\pi_i = P(A_1 \cup A_2 \cup \dots \cup A_n)$$

 A_j be the event that the ith unit is selected at the jth draw. j = 1(1)n.

In SRSWOR, A_j 's are mutually exclusive events, j = 1(1)n.

Mr. Pradip Panda, Asstt. Prof., Department of Statistics, Serampore College

So,
$$\pi_i = \sum_{j=1}^n P(A_j) = \sum_{j=1}^n \frac{1}{N} = \frac{n}{N}$$

 π_{ij} is the probability that both the ith and jth unit is selected in the sample of size n.

 $\pi_{ij} = P(i^{th} \text{ unit and } j^{th} \text{ unit is selected in the sample})$

 $= P(i^{th} unit is selected).$

 $P(j^{th} \text{ unit is selected } / i^{th} \text{ unit is already selected})$

$$=\frac{n}{N}\cdot\frac{n-1}{N-1}$$

Theorem I:

Sample mean is the unbiased estimator of population mean.

Proof:

Same as in case of SRSWR.

Theorem II:

$$V(\overline{y}) = \frac{N-n}{N} \cdot \frac{S^2}{n} = \frac{N-n}{N-1} \cdot \frac{\sigma^2}{n}$$

Where, $V(\bar{y})$ is the sampling variance of sample mean.

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2} = Population mean square$$

$$= \frac{N}{N-1} . \sigma^{2}$$

$$\sigma^{2} = Population variance = \frac{1}{N} \sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2}.$$
of Statistics, Serampore College $i=1$

Proof:

$$V(\bar{y}) = E[\{\bar{y} - E(\bar{y})\}^2]$$

$$= E[\{\bar{y} - \bar{Y}\}^2] = E[\{\frac{1}{n}\sum_{i=1}^n y_i - \bar{Y}\}^2]$$

$$= E[\{\frac{1}{n}\sum_{i=1}^n (y_i - \bar{Y})\}^2]$$

$$= \frac{1}{n^2} E[\sum_{i=1}^n (y_i - \overline{Y})^2 + \sum_{i \neq j} \sum_{j \neq j} (y_i - \overline{Y})(y_j - \overline{Y})]$$

$$= \frac{1}{n^2} \left[\sum_{i=1}^n E(y_i - \overline{Y})^2 + \sum_{i \neq j} E(y_i - \overline{Y})(y_j - \overline{Y}) \right]$$

$$= \frac{1}{n^2} \left[\sum_{i=1}^{n} \left\{ \sum_{i'=1}^{N} (Y_{i'} - \overline{Y})^2 \cdot \frac{1}{N} \right\} + \sum_{i \neq j} \left\{ \sum_{i' \neq j'} (Y_{i'} - \overline{Y}) (Y_{j'} - \overline{Y}) \cdot \frac{1}{N(N-1)} \right\} \right]$$

$$= \frac{1}{n^2} \left[n\sigma^2 + \frac{n(n-1)}{N(N-1)} \sum_{\substack{N \in \text{Pradip} \\ i' \neq j' \text{tatistics, Serampore College}}} \sum_{\substack{N \in \text{Prof., Djepartment} \\ i' \neq j' \text{tatistics, Serampore College}}} \right]$$

$$\left[\sum_{i=1}^{N} (Y_{i} - \overline{Y})\right]^{2} = \sum_{i=1}^{N} (Y_{i} - \overline{Y})^{2} + \sum_{i \neq j=1}^{N} (Y_{i} - \overline{Y})(Y_{j} - \overline{Y})$$

or,
$$0 = N.\sigma^2 + \sum_{i \neq j=1}^{N} (Y_i - \overline{Y})(Y_j - \overline{Y})$$

or,
$$\sum_{i\neq j=1}^{N} \left(Y_i - \overline{Y}\right) \left(Y_j - \overline{Y}\right) = -N\sigma^2$$

$$\therefore V(\bar{y}) = \frac{1}{n^2} \left[n\sigma^2 - \frac{n(n-1)}{N(N-1)} . N\sigma^2 \right]$$

$$=\frac{1}{n}\left[\frac{N-1-n+1}{(N-1)}.\sigma^2\right] = \frac{N-n}{(N-1)}.\frac{\sigma^2}{n}$$

Theorem III:

Show that sample mean square is the unbiased estimator of population mean square in SRSWOR.

Proof:

$$\begin{split} E(s^2) &= E\bigg(\frac{1}{n-1}\sum_{i=1}^n \left(y_i - \overline{y}\right)^2\bigg) \\ &= E\bigg(\frac{1}{n-1}\sum_{i=1}^n y_i^2 - \frac{n}{n-1}\overline{y}^2\bigg) \\ &= \frac{1}{n-1}\bigg[\sum_{i=1}^n E(y_i^2) - nE(\overline{y}^2)\bigg] \\ &= \frac{1}{n-1}\bigg[\sum_{i=1}^n \sum_{j=1}^n \sum_{\substack{P \in \mathbb{Z} \\ \text{of Statistics, Serampore College}}}^{N} Y_{i}^2 \cdot \frac{1}{N} - n\{V(\overline{y}) + E^2(\overline{y})\}\bigg] \end{split}$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} \sum_{i'=1}^{N} Y_{i'}^{2} \cdot \frac{1}{N} - n \left\{ \frac{N-n}{N-1} \cdot \frac{\sigma^{2}}{n} + \overline{Y}^{2} \right\} \right]$$

$$= \frac{n}{n-1} \left[\frac{1}{N} \sum_{i'=1}^{N} Y_{i'}^{2} - \overline{Y}^{2} - \frac{N-n}{N-1} \cdot \frac{\sigma^{2}}{n} \right]$$

$$= \frac{n}{n-1} \left[1 - \frac{N-n}{N-1} \cdot \frac{1}{n} \right] \sigma^2 = \frac{n}{n-1} \left[\frac{Nn-n-N+n}{n(N-1)} \right] \sigma^2$$

$$= \frac{n}{n-1} \left\lceil \frac{N(n-1)}{n(N-1)} \right\rceil \sigma^2 = \frac{N}{N-1} \sigma^2 = S^2$$

$$\therefore E(s^2) = S^2 \underset{\text{of Statistics, Serampore College}}{\text{and }} \hat{V}(\overline{y}) = \frac{N-n}{n} \cdot \frac{s^2}{n}$$

Efficiency of sample mean under SRSWOR over SRSWR:

$$V(\bar{y})_{WOR} = \frac{N-n}{N} \cdot \frac{S^2}{n}$$

$$V(\bar{y})_{WR} = \frac{N-1}{Nn}S^2 = \frac{N-n}{Nn}S^2 + \frac{n-1}{Nn}S^2$$

$$=V(\bar{y})_{WOR} + a \ positive \ quantity.$$

 $\therefore V(\bar{y})_{WR} > V(\bar{y})_{WOR}$. Equality holds if N is very l arg e compared to n.

So, SRSWOR is more efficient than SRSWR.

Variance of the estimate of the population total and its unbiased estimate:

In SRSWR

 $N\overline{y}$ is the unbiased estimator of the population total.

$$V(N\overline{y}) = N^2V(\overline{y}) = N^2.\frac{\sigma^2}{n}$$

$$\hat{V}(N\overline{y}) = N^2 \hat{V}(\overline{y}) = N^2 \cdot \frac{\hat{\sigma}^2}{n} = N^2 \cdot \frac{s^2}{n}$$

$$\therefore s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 is the unbiased estimator of the

population variannce in SRSWR.

of Statistics, Serampore College

In SRSWOR

Ny is the unbiased estimator of the population total.

$$V(N\overline{y}) = N^{2}V(\overline{y}) = N^{2} \cdot \frac{N-n}{N} \cdot \frac{S^{2}}{n}$$

$$\hat{V}(N\bar{y}) = N^2 \hat{V}(\bar{y}) = N^2 \cdot \frac{N-n}{N} \cdot \frac{\hat{S}^2}{n} = N^2 \cdot \frac{N-n}{N} \cdot \frac{s^2}{n}$$

$$\therefore s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 is the unbiased estimator of the

population mean square in SRSWOR.

Learn More....