
FORTRAN

What is FORTRAN?

FORTRAN is a general purpose programming language, mainly used for mathematical

computation. FORTRAN stands for FORmula TRANslation. The work on FORTRAN

started in 1950’s at IBM and there have been many versions since. The most common

FORTRAN version is still FORTRAN 77.

CHARACTER SET:

1. Alphabets: A, B, C, D, …, Z (Upper case)

2. Digits: 0, 1, 2, 3,…,9

3. Special characters: + - * / () , . ‘ $: = blank space

KEY WORDS:

ASSIGN CALL CHARACTER COMMON

COMPLEX CONTINUE DATA DIMENSION

DO DOUBLE PRECISION ELSE ELSE IF

END ENDIF EXTERNAL FORMAT

FUNCTION GOTO IMPLICIT INTEGER

SUBROUTINE READ WRITE RETURN

OPEN PRINT REAL STOP

THEN INTRINSIC

FORTRAN CONSTANTS:

Fortran Constants

Numeric constants
Logical constants

Character constants

Integer Real

Double precision

complex

1. Numeric constants

 i. Integer constants:

a) An integer constant is a whole number without any decimal or fractional part.

b) This constant is a string of digits 0 to 9 & may be positive or negative.

c) No comma or any characters can be used within the digits.

d) For positive numbers use of ‘ + ’ is optional but for negative numbers use of ‘-‘ just

before the number is mandatory.

e) The magnitude of an integer constant depends upon the word size of the computer. If

a computer has an n-bit word size, then the range of integer constant is −2��� to

2��� − 1.

Examples:

3;14 → Invalid (semi-colon is not allowed)

+2250 → Valid

−1234 → Valid

$55 → Invalid (Dollar sign is not allowed)

 ii. Real constants:

a) It is a signed and unsigned number with a decimal point. The general form of this

representation is ± �.� ; � is the integral part and � is the fractional part.

b) The total number of digits in the fractional part depends upon the word length of the

computer.

c) No comma or any characters can be used within the digits.

d) For positive numbers use of ‘ + ’ is optional but a negative number must be preceded

by a‘ − ‘.

e) Real constants can also be written in the exponential form

± �.� � ± �

 {mantissa} {exponent}

 Examples:

 1234.→ Valid

 41.06� + 06 → Valid

 67.89� − 4.5 → Invalid (Exponent cannot be a fraction)

 12,3 → Invalid (Comma is not allowed)

 iii. Double Precision constant:

Real constants in

decimal form

Signed or unsigned

integers

The real constants discussed earlier are single precision real constants and have accuracy up

to eight significant digits. In order to increase accuracy of a number, double precision data

type is used in which number of significant digits is doubled.

E.g., The value of pie correct to 14D (i.e. 3.14285714285714) cannot be stored in a single

precision constant. We need to store this value in a double precision constant in order to

retain the accuracy.

Double precision constants can also be expressed as

± �.� � ± �

 {mantissa} {exponent}

iv. Complex constants:

FORTRAN allows complex constants. Any complex number A+iB in FORTRAN is

represented as (A, B) where A and B are real or integer constants.

2. Character constants:

It is a sequence or strings of characters enclosed within single quotes. The number of

characters in a character constant is called the length of the character constant.

‘FORTRAN’ → Valid→ 7 character length

FORTRAN → Invalid (single quote is missing)

‘A+B’→ Valid→ 3 character length

3. Logical constants:

Two logical constants are used in FORTRAN. They are ‘true’ and ‘false’ which are written as

.TRUE. and .FALSE.

VARIABLES:

i) A variable name can contain letters A to Z, digits 0 to 9 but no special characters.

ii) A variable name must start with any letters from A to Z.

iii) A variable name must not exceed a length of six characters in FORTRAN 77 but in

FORTRAN 90 variable names can contain at most 31 characters and there is no reserved

word which cannot be used as a variable name.

iv) Any FORTRAN key word cannot be used as a variable name.

double precision

constants in

decimal form

signed or unsigned

integers

v) Blank space in a variable name is ignored and not counted in the total number of

characters.

1. Integer variable:

 In FORTRAN 77 any variables can be declared in two ways:

 i) by the method of type declaration (discussed later).

ii) any variable name starts with one of the letters I, J, K, L, M, N is considered as

integer variable.

E.g., LENGTH, MASS, JOUNIER etc.

 2. Real variable:

 In FORTRAN 77 any variables can be declared in two ways:

 i) by the method of type declaration (discussed later).

 ii) any variable name starts with one of the letters expecting I, J, K, L, M, N is

considered as a real variable.

 e.g., COUNT, TOTAL etc.

 3. Double precision variable:

 It is declared by method of type declaration.

4. Complex variable:

It is declared by method of type declaration.

5. Character constant:

It is defined as follow:

CHARACTER * N LIST

LIST indicates list of variables, separated by comma, N being the length of the

descriptor.

E.g.,

 CHARACTER* 10 NAME, STUDENT

NAME and STUDENT are character variables whose values have length 10.

CHARACTER A,B

A, B are character variables whose values are of length 1.

CHARACTER * 5 NAME,ROLL,TOTAL*3

NAME and ROLL are character variables whose values have length 5. TOTAL is a character

variable having value of length 3.

 CHARACTER*4B,C,A*3
 A = 'END'
 B = A
 C = 'FINAL'
 WRITE(*,*) A,B,C
 STOP
 END

 Output:
 'END'
 'END '
 'FINA'
__

 CHARACTER SENTENCE*80,WORD(20)*16,LINE*80
 SENTENCE = 'THIS IS IMPORTANT TO LEARN'
 WORD(1)=SENTENCE(1:4)
 I=6
 J=7
 WORD(2)=SENTENCE(I:J)
 WORD(3)=SENTENCE((J+2):(J+10))
 WORD(4)=SENTENCE(J+12:J+13)
 LINE = WORD(1)//WORD(2)//WORD(3)//WORD(4)
 WRITE(*,*) LINE
 STOP
 END

 Output:
 THIS IS IMPORTANT TO

6. Logical variables:

It is declared by method of type declaration.

TYPE STATEMENT:

In FORTRAN 77 any variable name started with one of the letters I, J, K, L, M, N is treated

as integer variable. If we want to assign real value to these variable names, then we have to

use method of type declaration. Again any variable name begins with any letters expecting I,

J, K, L, M, N is considered as real variable. To make these variables integer we have to use

method of type declaration.

The variables along with their types, normally declared at the beginning of the program. This

is known as type declaration.

E.g.,

INTEGER TOTAL,SUM

REAL MASS,LENGTH

CHARACTER *10 NAME, ROLL

COMPLEX X,Y,Z

LOGICAL COUNT

LOGICAL L1,L2,L3
X=1.1
Y=2.0
Z=3.0
L1=X.GT.Y
L2= Y.LT.Z
L3=X.NE.Y
WRITE(*,*)L1,L2,L3
STOP
END

Output:
.FALSE.
.TRUE.
.TRUE.

ARITHMATIC OPERATORS:

Symbol Arithmetic Operation

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

ARITHMETIC EXPRESSIONS:

Arithmatic Expression Fortran Expression

a+b-c A+B-C

ab+c A*B+C

�� + �� + �� A**2+A*B+B**2

(� + �)

�

(A+B)/C

� + �
�� A+B/C

�� A**B

HIERARCHY OF OPERATIONS:

Operation Priority

Function Evaluation 1st

Exponentiation(**) 2nd

Multiplication(*)& division(/) 3rd

Addition(+) & Subtraction(-) 4rh

LIBRARY FUNCTIONS:

Function Operation Type of argument Type of result

SIN(X)
X in radian

sin� Real Real

COS(X)
X in radian

cos� Real Real

TAN(X)
X in radian

tan� Real Real

ASIN(X) sin�� � Real Real

ACOS(X) cos�� � Real Real

ATAN(X) tan�� � Real Real

SQRT(X) √� Real Real

ALOG(X) log� � Real Real

ALOG10(X) log�� � Real Real

EXP(X) �� Real Real

ABS(X) |�| Real Real

AMOD(X,Y) Remainder of X/Y Real Real

MOD(I,J) Remainder of I/J Integer Integer

MAX0(J,K,…) Gives the largest of J,
K,…

Integer Integer

MIN0(J,K,…) Gives smallest of J, K,
…

Integer Integer

AMAX1(A,B,…) Gives the largest of A,
B,…

Real Real

AMIN1(A,B,…) Gives smallest of A, B,
…

Real Real

IFIX(X) Converts argument to a
integer value

Real Integer

FLOAT(I) Converts argument to a
real value

Integer Real

CMPLX(X,Y) Converts argument to a
complex value

Real Complex

CABS(C) Gives modulus

Complex Real

REAL(C) Gives the real part of an
argument

Complex Real

AIMAG(C) Gives the imaginary
part of an argument

Complex Real

CONJG(C) Complex conjugate

Complex Complex

LOGICAL EXPRESSIONS:

Logical Meaning Value
.NOT. It complements the value of a

logical variable.
True or False

.OR. When operates on two variables A
& B becomes true if one of A or B
or both of them is true and false if
both are false.

True or False

.AND. When operates on two variables A
& B becomes true only if both of A
and B are true and false otherwise.

True or False

LOGICAL F,S,I,X

F=.FALSE.

S=.TRUE.

I=.TRUE.

X=.FALSE.

Logical Expression Value

X.OR.F .FALSE.

.NOT(S.AND.I) .FALSE.

F.AND.I .FALSE.

S.AND.I .TRUE.

__

RELATIONAL EXPRESSIONS:

Relational
Operator

Meaning

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

ARITHMETIC ASSIGNMENT STATEMENT:

Assignment statement is used to assign values to variables.

Syntax: Variable= Expression

This statement allows the programmer to assign the value of the expression in the R.H.S to

the variable (any valid FORTRAN variable) in the L.H.S.

Statement Comment Remarks
A=B+C Valid Assign B+C to A (Real assignment)

I=(J+K)/L Valid Assign (J+K)/L to I (Integer

assignment)

B=SQRT(C) Valid Assign SQRT(C) to B (real
assignment)

P+Q=R Invalid Expression=Variable (not allowed)

L+M=I-J Invalid Expression = Expression (not
allowed)

X=Y*COS(A) Valid Assign Y*COS(A)to X (Real
assignment)

INPUT-OUTPUT STATEMENT:

Read Statement:

Syntax: READ(D,F)LIST

D is the input device number and is optional. Very often * is used in place of D. In that case

the compiler understands that the data will be input through the keyboard.

F is the format statement label number and is optional. Very often * is used in place of F to

indicate that the input data will be in free format.

LIST is the list of variable names in order in which data are to be input. The variable names

are separated by commas.

Write Statement:

Syntax: WRITE(D,F)LIST

D is the input device number and is optional. F and LIST have the same meaning and same

role as in case of READ statement.

E.g.,

READ(*,*) A,B

C1=A+B

C2=A-B

C3=A*B

WRITE(*,*) C1,C2,C3

Input:

A=2.0

B=3.0

Output:

C1=5.0

C2=-1.0

C3=6.0

__

FORMAT STATEMENT

Syntax: S FORMAT(SPECIFICATION LIST)

S is the format statement number which is already used in input or output statement.

E.g., 100 FORMAT(‘ANS=’,F10.4,4X,I5)

Different FORMAT specifications:

Specification General form Meaning
I specification Iw I indicates that the data is of integer type and w ia an integer

constant indicating the field size.
F Specification Fw.d F represents that the data is of real type, w is an integer

constant indicating the field size of the real value including
sign and d indicates the number of digits appearing after the
decimal point.

E Specification Ew.d E indicates that the data is in exponential form of real
number. w is the total field width including the mantissa
part, the letter E, the decimal point and sign. d is the number
of digits in the mantissa part assuming that the number is in
normalised exponential form.

D Specification Dw.d Identical with E specification and the only difference is D in
place of E.

A Specification An A indicates that the data is of character type and n represents
the field size.

X Specification nX N is the number of spaces to be skipped.

T Specification Tn Tabs to column n and prints the number at the nth position.

L Specification Lw It is used to read or write logical variables. L specifies that
the data is of logical type and w represents the field size.

Slash(/)
Specification

/ or // It is used to skip to the next line. ‘/’ is used to print the value
in the 2nd line. ‘//’ skips the 2nd line and the value is printed
in the 3rd line.

 Stored value Format Specification Output
576729 I6 576729
576729 I10 ****576729
-37216 I6 -37216
-37216 I10 ****-37216

-3721.571 F9.3 -3721.571
-3721.571 F10.3 *-3721.571

157.23 F9.3 **157.230
321.38756 E15.8 *0.32138756E+03
1234567.89 E9.2 *0.12E+07
0.00001234 E10.3 *0.123E-04

NAME A8 ****NAME
1.52376214391 D17.10 *0. 1523762144D+01

PQRS (T5,A4) 12345678910
 PQRS

X=(.FALSE.) L2 12345678910
 F

9.65 (2X,F4.2) 12345678910
 9.65

STOP STATEMENT:

Syntax: STOP

STOP statement is used to terminate the execution of the program.

END STATEMENT:

Syntax: END

END statement is the last statement in a FORTRAN program and it identifies the physical end

of a FORTRAN program for the compiler.

Difference:

STOP

END

The STOP statement instructs the
compiler to stop the execution of the
program.

The END statement indicates that there
is no more statement left in the
program unit.

The STOP statement can be used in
anywhere in the program so that it
make sense.

The END statement identifies the
physical end of a FORTRAN program
for the compiler.

The STOP statement is optional for
FORTRAN 77.

The END statement is compulsory for
every FORTRAN program.

CONTROL TRANSFER STATEMENT:

GOTO STATEMENT:

Syntax: GO TO N

GOTO Statement is used to transfer control the to the statement label N.

E.g.,

 I=1
 10 WRITE(*,*)I
 I=I+1
 GO TO 10
 STOP
 END

ADDITIONAL GOTO STATEMENTS:

1. Computed GOTO Statement:

Syntax: GOTO(S1,S2,S3,…,SN),INTEGER EXPRESSION

S1,S2,S3,…,SN are statements number not necessarily distinct. If the value of the

integer expression be m, then the control is transferred to the Mth statement i.e. SM is

executed (M<N). If the value of the integer expression is not any one of

1,2,3,…,N, then control is transferred to the very next statement appearing after

the COMPUTED GOTO statement.

e.g.,

GO TO(5,10,15,20,25),J-K

In this statement when J-K=1,2,3,4,5,program control is shifted to the

statement 5,10,15,20,25 respectively. When J-K is less than 1 or more than 5

then control is transferred to the very next statement appearing after the COMPUTED

GO TO statement.

2. Assigned GO TO statement:

Control transfer

Selection/ Decision control

statements

Repetition statements

GOTO Statement IF Statement DO Statement Continue Statement

Syntax: ASSIGN Integer constant TO Integer variable

 GOTO Integer variable, (S1,S2,S3,…,SN)

The ASSIGN statement initializes an integer value to the integer variable. The integer

variable is used in assigned GO TO statement and if the value of the variable matches

with any one of the list of the statements numbers S1,S2,S3,…,SN of the assigned

GO TO statement then the control is transferred to that statement for execution

otherwise an execution error occurs.

E.g.,

ASSIGN 44 TO I

GOTO I,(10,44,20,25)

At first it assign 44 to I and then in the assigned GOTO statement the control is

transferred to the statement number 44.

IF STATEMENTS:

1. Logical IF Statement:

Syntax: IF(Logical/Relational expression)Statement

Logical IF statement first evaluate the Logical/Relational expression and then execute

the statement associated with it if the value of the expression is true. If the

logical/Relational expression is false, the Logical IF statement is not executed and

control is transferred to the very next statement after it.

E.g.,

 WRITE(*,*)’GIVE X’
 READ(*,*) X
 Y=1.0
 IF (X.LE.5) Y=0
 Z=X+Y
 WRITE(*,*) Z
 STOP
 END
 Input:
 2.0
 Output:
 2.0

2. Arithmetic IF Statement:

Syntax: IF(Arithmetic Expression) S1,S2,S3

Arithmetic expression (any valid FORTRAN arithmetic expression) is evaluated first.

The control is transferred to S1,S2,S3 according to the value of arithmetic

expression is negative, zero or positive.

E.g.,

 WRITE(*,*)’GIVE X,Y’
 READ(*,*) X,Y
 IF (X-Y) 10,20,30

 10 Z=Y-X
 GO TO 40
 20 Z=0.0
 GO TO 40
 30 Z=X-Y
 GO TO 40
 40 WRITE(*,*) Z
 STOP
 END
 Input:
 2.0 3.0
 Output:
 1.0

3. Block IF Statement:

a) IF-THEN-ENDIF Statement:

Syntax: IF(CONDITION)THEN

 S1
 S2

 .

 .

 .

 SN

 ENDIF

S1,S2,S3,…,SN is a set of executable statement. If the condition is true, then the

statements are executed and when all the statements are executed, control is

transferred to the very next statement after ENDIF.

E.g.,

READ(*,*)A,B

IF(A.GT.B)THEN

T=B

B=A

A=T

ENDIF

WRITE(*,*)A,B

STOP

END

b) IF-THEN-ELSE-ENDIF Statement:

Syntax: IF(CONDITION)THEN

 S1
 S2

 .

 .

 .

 SN

 ELSE

 N1
 N2

 .

 .

 .

 NM

 ENDIF

S1,S2,S3,…,SN is a set of executable statement. N1,N2,N3,…,NM is a set of

another executable statement. After the execution of the condition (relational/logical

expression), the set of statements S1,S2,S3,…,SN are executed only if the

condition is true. The set of statements N1,N2,N3,…,NM are executed i.e. else

block is countered otherwise.

 E.g.,

 READ(*,*)A,B

 IF(A.GT.B)THEN

 LARGEST=A

 ELSE

 IF(B.GE.A)THEN

 LARGEST=B

 ENDIF

 WRITE(*,*)LARGEST

 STOP

 END

__

IF-ELSE-IF STATEMENT:

Syntax: IF(CONDITION 1)THEN

 BLOCK 1
 ELSEIF(CONDITION 2)THEN

 BLOCK 2

 .

 .

 .

 ELSEIF(CONDITION M)THEN

 BLOCK M

 ELSE

 BLOCK M+1

 ENDIF

This IF structure allow the programmer to select one from more than two alternatives. At first

the condition 1 is evaluated, if it is true then block 1 is executed and then the control is

transferred to the next statement after ENDIF. If condition 2 is true then block 2 is executed

and the control is transferred to the next statement after ENDIF. Similarly for other blocks.

E.g.,

READ(*,*)A,B,C

IF((A.GE.B).AND.(A.GE.C))THEN

LARGEST=A

ELSEIF((B.GE.A).AND.(B.GE.C))THEN

LARGEST=B

ELSEIF((C.GE.A).AND.(C.GE.B))THEN

LARGEST=C

WRITE(*,*)LARGEST

STOP

END

 NESTED BLOCK IF STRUCTURE

IF(CONDITION 1)THEN IF(CONDITION 1)THEN

 A1 IF(CONDITION 2)THEN
 A2 IF(CONDITION 3)THEN

 AM IF(CONDITION 4)THEN

ELSE D1

IF(CONDITION 2)THEN D2

 B1 DN
 B2 ELSE

 BN F1

 ELSE F2

 IF(CONDITION 3)THEN FM

 C1 ENDIF

 C2 ELSE

 CP C1

 ELSE C2

 IF(CONDITION 4)THEN CP

 D1 ENDIF

 D2 ELSE

 DQ B1

 ELSE B2

 E1 BK

 E2 ENDIF

 ER ELSE

 ENDIF A1

 ENDIF A2

 ENDIF AR

 ENDIF ENDIF

DO STATEMENT:

Syntax: DO K CONTROL VARIABLE=START VALUE,STOP VALUE,STEP

 S1
 S2

 .

 .

 .

 SN

 K CONTINUE

K is the statement label of a FORTRAN statement. Generally against statement number K the

continue statement is written. CONTROL VARIABLE may be integer, real number or double

precision. START VALUE is the initial value of the control variable. STOP VALUE is the

terminal value of the control variable and STEP is the increment of the control variable after

each iteration. The value of the increment may be positive or negative but must not be zero.

START VALUE and STOP VALUE and this value may be constant (real or integer) or

variable or expression.

The above form of DO statement though most general, may not be supported by some of the

older versions of the compiler. The following form is however supported by all compilers

 DO N I=START VALUE,STOP VALUE,STEP

 S1
 S2

 .

 .

 .

 SN

 N CONTINUE

where START VALUE,STOP VALUE,STEP are integers.

 DO 10 K=2,100,2

 WRITE(*,*)K

 10 CONTINUE

 STOP

 END

SUBSCRIPTED VARIABLES:

1. One-dimensional arrays:

An one-dimensional array refers to a single variable which has several values known

as elements. Each array has a name and each element of that array is identified by a

positive integer written within the parenthesis after the array name. For example

 A(20)

declares an one dimensional array of length 20 consisting of 20 real numbers stored

contiguously in memory. By convention FORTRAN arrays are indexed from 1 and

up. Thus the first number in the array is denoted by A(1) and the last by A(20).

However, arbitrary index ranged arrays can be in the following way:

 B(0:19),C(-162:237)

Here B is an one dimensional array of length 20, the index runs from 0 to 19. C is also

an one dimensional real array of length 237-(-162) +1 = 400, the first element is

denoted by C(-162) and last element is C(237).

2. Multi-dimensional arrays:

An array where the elements can be referred by two or more than two subscripts is

known as multi-dimensional array.

Matrices are usually represented by two-dimensional arrays. For example, the

declaration

 A(3,5)

defines a two-dimensional array of 3*5=15 real numbers. It is useful to think of the

first index as the row index, and the second as the column index. Hence we get the

graphical picture:

 (1,1) (1,2) (1,3) (1,4) (1,5)
 (2,1) (2,2) (2,3) (2,4) (2,5)
 (3,1) (3,2) (3,3) (3,4) (3,5)

 Two-dimensional arrays can be defined for arbitrary ranges. The general syntax for this

declaration is

 NAME (LOW_INDEX1 : HI_INDEX1, LOW_INDEX2 :

HI_INDEX2)

The total size of the array is then

 SIZE = (HI_INDEX1-LOW_INDEX1+1)*(HI_INDEX2-

LOW_INDEX2+1)

Similarly an array A(4,5,6) is known as three-dimensional array.

THE DIMENSION STATEMENT:

Before using any subscripted variable in a program the compiler must be provided i) name of

the subscripted variable, ii) number of subscripts, i.e. whether it is one-dimensional or it is

two-dimensional.

Syntax: DIMENSION ARRAY1(SIZE),ARRAY2(SIZE),...

Array size is an integer constant not a variable. However, DIMENSION statement is not

required if the array is declared by the type declaration statement. For example

 REAL A(10),B(7,6)

 INTEGER I(0:5,0:4)

E.g.,
 REAL A(3,5)
 INTEGER I,J
 DO 20 J = 1, 3
 DO 10 I = 1, 3
 A(I,J) = REAL(I)/REAL(J)
 10 CONTINUE
 20 CONTINUE
 DO 30 I = 1,3
 WRITE(*,*)(A(I,J),J=1,5)
 30 CONTINUE
 STOP
 END
__

DATA STATEMENT:

Syntax: DATA V1,V2,V3,…,VN/D1,D2,D3,…,DN

here V1,V2,V3,…,VN are list of variables whose values are D1,D2,D3,…,DN
respectively.

DATA A,B,C /1,2,3
declares A=1,B=2,C=1.

PARAMETER STATEMENT:

Syntax: PARAMETER(NAME 1=U1,NAME 2=U2,…,NAME K=UK)

The parameter statement assigns a value to a constant which cannot be changed by any
statement in the program. This parameter statement is placed before all executable
statements.

SUBPROGRAM:

There are mainly two types of subprograms in FORTRAN.

1. Function subprogram:
It is program unit separated from the main program and can be called by the main
program. Function subprogram is used when only one value is required to be returned
from the sub program .
 Syntax: Type FUNCTION name(argument list)

 name=expression

 RETURN

 END

Type indicates the type of the function (real, integer, logical). If type indicator is
omitted then function type is defined by the first letter of the function name. Function
name is any valid FORTRAN variable name. In the argument list all the arguments
are to be separated by commas. There can be more than one RETURN statement in a
subprogram. The program control is transferred to the main program by the use of
RETURN statement.

2. Subroutine subprogram:

Syntax: SUBROUTINE name(argument list)

When more than one value is to be returned from the subprogram to the calling
program, subroutine subprograms are used. SOUBROUTINE name is any valid
FORTRAN variable name. The name of SOUBROUTINE returns no value. That is
why type declaration convention is not allowed while naming a SUBROUTINE. All
arguments in the argument list are separated by comma. The values to be returned to
the calling program, take place through the arguments.

e.g.,
 READ(*,*)A,B,C
 CALL AREA(A,B,C,DELTA)
 WRITE(*,100)A,B,C,DELTA
100 FORMAT(F10.6,2X,F10.6,2X,F10.6,2X,F10.6)
 SUBROUTINE AREA(A,B,C,DELTA)
 S=A+B+C
 DELTA=SQRT(S*(S-A)*(S-B)*(S-C))
 RETURN
 END
__

OPENING OF A FILE:

The instruction for opening a file has the following form:

OPEN(UNIT NO.,FILE=’FILENAME’,STATUS=’NEW OR OLD’)

FILE NAME is the name of the file. UNIT NO. is non-negative integer that is unique for
each file used in program. STATUS indicates the nature of the file i.e. whether it is existing
one or it has to be created. For input files the status will be OLD and for output files status
will be NEW.
e.g.,

OPEN(5,FILE=’X.IN’,STATUS=’OLD’)

CLOSING A FILE:

The instruction for closing a file has the following form:

 CLOSE(UNIT NO.)

Normally this is done at the end of the program before STOP statement.

E.g.,
 CLOSE(5)

RULES FOR WRITING A PROGRAM IN FORTRAN

1. One statement should be typed in one line.
2. The statements should be written from 7th column and it should extend up to 72th column.
3. Normally there are 80 columns in a line. 73rd to 80th columns are ignored by the compilers.
4. First five columns are kept reserve for writing statement numbers. The ranges of statement
numbers me be from 1 to 99999.
5. Sixth column is used for writing the continuation numbers. Sometimes long instructions
may not be accommodated within 72th column. In such a situation the instruction extends to
subsequent lines through the use of a continuation number. For first continuation line the
number is 1, for 2nd it will be 2 and so on.

