Paper-Eight

Module-XIV
Full Marks-30
Time- 1.15 hr

Answer any TWO questions:

1. a) Show that if $P(A \mid B)=1, P\left(B^{c} \mid A^{c}\right)=1$.
b) An urn initially contains 5 white and 7 black balls. Each time a ball is selected, its colour is noted and it is replaced in the urn along with 2 other balls of the same colour. Compute the probability that the first 2 balls selected are black and the next 2 white.
c) Suppose we have 10 coins such that if the i th coin is flipped, heads will appear with probability $\frac{i}{10}, i=1,2, \ldots, 10$. When one of the coins is randomly selected and flipped, it shows heads. What is the conditional probability that it was the fifth coin?
d) Define Poisson trials. What is the probability of obtaining multiple of three twice in a throw with 6 dice?

2+3
2. a) How many people are needed so that the probability that at least one of them has the same birthday as you is greater than $\frac{1}{2}$?
b) Suppose $P(X=0)=1-P(X=1)$. If $E(X)=3 \operatorname{var}(X)$, find $P(X=0)$.
c) The probability density of a random variable X is

$$
f(x)= \begin{cases}2 x e^{-x^{2}}, & x>0 \\ 0, & \text { otherwise } .\end{cases}
$$

Find the probability density of X^{2}.
d) The random variable X has the p.d.f

$$
f(x)=\left\{\begin{align*}
a x+b x^{2}, & 0<x<1 \\
0, & \text { otherwise } .
\end{align*}\right.
$$

If $E(X)=0.6$, find $a) P\left(X<\frac{1}{2}\right)$ and $\left.b\right) \operatorname{var}(X)$.
3. a) Consider a sequence of independent Bernoulli's trials, each of which is a success with probability p. Let X_{1} be the no. of failures preceding the first success, and let X_{2} be the no. of failures between first two successes. Find the joint mass function of X_{1} and X_{2}.
b) The joint p.d.f of X and Y is given by

$$
f(x, y)=\left\{\begin{aligned}
\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right), & 0<x<1,0<y<2 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Find $P(X>Y), P\left(\left.Y>\frac{1}{2} \right\rvert\, X<\frac{1}{2}\right)$.
c) X is a continuous random variable having spectrum $(-\infty, \infty)$ and distribution function $F(x)$. Show that

$$
\begin{equation*}
E(X)=\int_{0}^{\infty}\{1-F(x)-F(-x)\} d x \tag{4}
\end{equation*}
$$

provided $x\{1-F(x)-F(-x)\} \rightarrow 0$ as $x \rightarrow \infty$.
d) Show that $E\left\{(X-a)^{2}\right\}$ is minimized at $a=E(X)$.
4. a) Use central limit theorem to find the approximate probability that the sum obtained is between 30 to 40 when 10 fair dice are rolled.
[Given $\left.\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{1.0184} e^{-\frac{x^{2}}{4}} d x=0.846\right]$
b) If X is a standard normal random variable, what is $\operatorname{Cov}\left(X, X^{2}\right)$?
c) Derive Poisson distribution as a limit of Binomial distribution.
d) If X is a non-negative random variables having mean m, prove that $P(X \geq \tau m) \leq \frac{1}{\tau}$ for any $\tau>0$.

