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The Cauchy Problem:
Consider the 2™ order linear PDE

Auyy + Buyy + Cuyyy = H(x,y,u, uy, uy) . (1)
where the coefficients A4, B, C are functions of x and y.

Let (xo,V,) be a point on a smooth curve L, in the xy —plane. Let the curve has the
parametric form

Xo = x9(A), Y0 = yo(d), ... (2)
A being the parameter.

The Cauchy problem is to determine the value of u(x, y) in the neighbourhood of the curve
Loy where the following conditions are satisfied:

u=f(1) onlLg..(3a)

ou

e g(A)onlLy ...(3b)

i is the unit normal to L, which lies to the left of L, while L is traced in counter clock-wise
direction. The functions f and g, prescribed on L, are called Cauchy data.

For every point on L, the value of u is specified by (3a). The curve L, in the xy —plane
alongwith the condition (3a) defines a curve L in (x,y,u) —space whose projection on

Ranita Roy, Assistant Professor, Department of Mathematics, Serampore College



xy —plane is Ly. The solution of Cauchy problem is thus an integral surface in
(x,y,u) —space which passes through L and satisfies the condition (3b).

Let us suppose that the function f (1) is continuously differentiable. Then along L,

du Odudx audy df
- oxar ayan-ar Y

ou audy_l_audx 5
on  Odxds ayds_g - (4D)

O Fuh—gfe (- &
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(dx)j dr
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dx  dy Fig. 1
. ar  aa| _ (@0)*+@y)? :
Since Cay ax| T T aman # 0, the equations (4a) and (4b) are solvable for u, and
ds ds
Uy.

Therefore, u, and u,, are now known on L. Differentiating u, and u,, w.r.t A, we find

da dx dy

dx dy
dl(uy) uxy d/1+uyy d/1 (Sb)

Again, we have the PDE
Auyy + Buyy + Cuyyy = H(x,y,u, uy, uy) .. (6)

Now, H is prescribed on L as u, Uy, u, are all given on L. If
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dx dy

— = 0
T & afroorc(E) -8(2)(2)+4(2) +o
0 ¥ Y VT ar) \dx da ’
dl dA
A B C
dy\’ dy . . o
orA(dx> —B(a)+C¢O,L.e.LOrrustnotcm nci dd thcharacteri sturwves

then uyy, Uy, Uy, can be solved uniquely from (5a), (5b) and (6).

Hence, Uyy, Uyy, Uy, are obtained on Ly. Now, if A, B,C, f and g are analytic functions then

all higher derivatives of u(x, y) can be computed by the above procedure. This produces the
Taylor’s series of u(x, y) about (x4, yo)

n=0 k=0

The Cauchy-Kowalewskaya Theorem:

Let the PDE is given in the form

n

- E ( ) : E ( ) 2
u a;i\y,X1,Xp, ..., X + Aoi\V, X1,X9, ..., X
Yy A lj Y, X1, X3 n ) ia ; ' 0i\Y, X1, X2 n vo ;

Ju ou
+ Z bi(yl X1, X2, ---an)ﬁ + bO(Y; X1,X2,. -an)_ + C(.V: X1,%X2, "'an)u
5 L

dy
+ h(y, xq, X3, o) Xp) .. (8)

Here, a;j, ag;, b;, by, ¢, h are all analytic functions of their arguments in the neighbourhood
of point (¥%,x9,x2, ..., x2).

The Cauchy problem for this equation consists in finding a solution satisfying the initial
conditions

u(y, x4, %2, o, Xp) = f(x1, %3, ..., X)) oy = y°,
Uy (Y, X1, X, oo, %) = f (X1, %5, .0, %) ON Y = y°

where f and g are analytic in the neighbourhood of (x,xJ,...,x2). Then the Cauchy
problem has an unique solution in some neighbourhood of (y°, x?, x2, ..., x2).
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Wave Equation:

Two-dimensional wave equation:

Let us consider a flexible and stretched string under the tension T attached between two
fixed end points at a distance [ apart.

The following assumptions are made in order to obtain a simple equation:

e The string is made of homogeneous material.

e The tension of the string is constant.

e Only transverse vibration takes place.

e The deflection is small compared to the wave length of the string.

e The slope of deflected string at any point is small compared with unity.

Let the two fixed ends of the string be attached at 0(0,0) and L(l, 0). The string is assumed
to lie on the x —axis in the equilibrium position of the string. We consider a differential
element PQ of the string. Let T be the tension of the string at P and Q as shown in fig. 2. If a
vibration is made in the xu —plane, the displacement u of the string at a time t will be a
function of x and t. Let us further assume that the string length 6x is stretched to §s.

A Y Q 1/'92

%
P

2 ,?
P Q

0 ox
6x L(1.0)

v
=
v

Fig. 2
The force acting on the element of the string in the vertical directionis T si 0, — T si 10;.

Due to Newton’s law of motion, the resultant force is equal to the mass times the

acceleration.

~Tsiy, —Tsi; = (pdx)u,(x,t) ... (1)
where p is the mass per unit length of the string in equilibrium position.
Since, the angles a and § are very small, si i9; = tand;,si 0, = tand,.

From (1), Ttamd, — Ttand; = (pdx)u,(x,t),or tamd, —tamd; = %utt(x, t)..(2)
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Now, t and; and t and, are the slopes of the string at x and at x + &x.

~tamd; = uy(x, t), tand, = u,(x + 6x,t).

pox
SuU(x+0xt) —u,(x, t) = Tutt(x, t),

uy(x +6x,t) —u,(x,t) p

o = Tutt(x: t),

Taking limit as 6x — 0,
Uy, = U (x, t),c% = —

If there is any additional force f acting per unit length of the string, then

Tuxx(xl t) + f = putt(xJ t))

o1, C%Uypy + F = Uy (x,t),F = £

Solution of one dimensional wave equation by Canonical reduction:

Consider the wave equation (Homogeneous equation)
_ 2
Ute = C " Uxx

The characteristic equations are

dx v 4c?

dt 2

= *c.
The characteristic curves are given by § = x + ct,n = x — ct.
S Uy = Ugly + Ul = Us + Uy, Uyy = (uf + un)fg‘x + (ug + un)nnx = Ugg + 2Ugy + Uy,

U = Ugéy + UpT)e = c(uf = un),utt = c(uf = un)fft + c(u; = un)nnt
= cPuge — 2c%ugy + cPupy,.
Substituting the expression of u;; and u,., in the PDE,
4c*ugy = 0,01 ugy = 0...(2)

Integrating (2) w.r.t n, we find

ug =Y ($).
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Again, integrating w.r.t &, u(&,n) = [Y*(&)d & + ()
=yY(&)+ o) [Y,parearbi trafuncti ogs
=yY(x+ct) +px—ct)..(3)

[A wave motion is generally represented by equation of the form y = f(x — ct) ... (4A)
considering the axis of x to be horizontal and the axis of y to be vertically upwards.

y represents the position of a particle at x at time t. If t is increased by T, and x is increased
by cT, then f(x +cT —c(t+ T)) = f(x — ct) = y.This shows that the wave profile
y = f(x) moves with velocity c in the positive x —direction (cT distance is covered in time
T, so c is traversed in unit time).

Similarly, the profile f(x + ct) represents a progressive wave travelling to negative
x —direction with velocity c.]

¢ A u:(p(x)
2
t=—
C
u=g) _1
s c
u=¢(x)
t=0
» X
Fig. 3

Y (x + ct) represents a progressive wave profile travelling to negative x —direction with
speed ¢ without change of shape. Again, ¢(x — ct) is also a progressive wave profile
travelling to positive x —direction with speed ¢ without change in shape. @(x — ct) is a
function of x for a given time t. At t = 0, the shape of the function is given by @(x). At any
time t, the shape of function is @(x — ct) or ¢(n) where n = x — ct is the new coordinate
system obtained by translating the origin at a distance ct to the right. Thus, the shape of the
curve remains the same as time progresses and the profile moves to the right with velocity
C.

The initial value problem- D’ Alembert’s Solution:

Consider the PDE
Upr = C%Uyy, x ER,E >0,
u(x,0) = f(x), u:(x,0) = g(x), x € R.[Ini ti@dndi ti ohs. (4)

We have already obtained
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u(x, t) =yP(x+ct) + p(x —ct) ...(5)

Hence, the general solution (5) of one-dimensional wave equation represents the super
position of two arbitrary wave profiles, both of which are travelling with common speed ¢
but in the opposite directions along x —axis.

Applying the I.Cs (4),
u(x,0) = P(x) + ¢(x) = f(x) ... (6),
ur(x,0) = chy — cpy = g(x) ... (7).

Integration of (7) gives,

1 X
Y(x) —plx) = E,[ g(t)dt+ D, ...(8)

Xo
X and D being the arbitrary constants.

Solving (6) and (8),

1 1 r* D
W) =57 @) + 5 | g@idr+,

1 1 * D
px) = Ef(x) _Zf g(r)dr—?

The solution is given by

1 1 x+ct x—ct

u(x,t) = > [fx+ct)+f(x—ct)]+ > U g(t)dr — f g(‘[)d‘[l
_ 1 1 x+ct
= [+ ct) + flx—c)] + fo_ct g()dr ...(9)

Equation (9) is called the D’Alembert’s solution of the Cauchy problem for one-dimensional
wave equation.

Note:

e The solution u(x,t) depends only on the initial values of f at points x + ct and
x — ct and the values of g between the two values. In other words, the solution
does not depend on all values outside the interval x — ct < x < x + ct. This interval
is called the domain of dependence of the variable (x, t).
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A y
P(xo,to)
D
> x
A(xg — cty,0) B(xq + cty,0)
Fig. 4

According to (9), the value of u(xy,ty) depends on the initial data f and g and on
the interval [x, — ctg, xo + cty] which is cut out from the initial line by the two

characteristic curves x £ ct = const having slopes (+l) passing through (x, ty).

C
The interval [x, — cty, X + cty] on the line t = 0 is called domain of dependence of

the solution at the point (x, t,).

The solution u(x,t) at every point (x,t) inside the triangle D is completely
determined by the Cauchy data on the interval [x, — cty, xo + cty] (cffig). The
region D is called region of determinacy of the solution.

v
=

A(x0,0)
Fig. 5
The disturbance at a point (xy,0) on the x —axis influences the value of u(x,t) in
the wedge-shape region I(xy) = {(x,t)|xo —ct < x < x,+ct}. I is called the
region of influence of the point (x,, 0)(cffi ).

If g(x) = 0, i.e. the string is released from rest, then

u(x,t) = %[f(x +ct) + f(x — ct)].

For example (cf. Sneddon [1] ) let us take
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0, x < —aq,
fx) =11, x| <a,
0, x>a.
The motion may be then represented by a series of graphs corresponding to different values
of time (cf. fig 5).

A
t=0
0 >
—a a
A
. a
2 | [ {1 |
0 >
—a a
A
a
t = E
| | ,
0
—2a -—a a 2a
_ 3a
T 2c
| | || | .
—2a —a 0 a 2a
2a I
t=—
| | | | ,
0
—3a —2a —a a 2a 3a

Initial-boundary value problem:

Semi-infinite string with a fixed end:
Let us consider a semi-infinite vibrating string with a fixed end. Consider the PDE
Upe = CPUyy, 0<x< oo, t >0,
u(x,0)=f(x), 0<x<o
—I.Cs
ut(xﬁo):g(x)) 0Sx<0(

u(0,t) = 0, t > 0. —» B.C (Homogeneous)
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Here, the initial displacement is always zero.

For x > ct, the solution is same as D’Alembert’s solution of infinite string. The displacement
is influenced by the initial data on [x — ct, x + ct].

For x < ct, the interval [x — ct, x + ct] extends to the negative side of the x —axis where
the functions f and g are not prescribed.

D’ Alembert’s formula yields
u(x, t) = P(x +ct) + p(x — ct) ...(10)
where
WO =@+ [y 9Ddr +7,£ > 0;

. - 5 - (11)
o) =57 5 | 9@dr-z.n20

Now, we apply the boundary condition.
u(0,t) = 0 = (ct) + p(—ct),
or, p(—ct) = —y(ct).
Letting @ = —ct, we find, ¢(a) = —yY(—a),a < 0.

Replacing a by x — ct, (x — ct) = —y(ct — x).

1 1 ct—x D
s~ p(x — ct) =—§f(ct—x)—zf g(‘[)d‘[—E.

The solution is thus given by

x+ct

1 1
E[f(x+ct)+f(x—ct)]+zf g(t)dr, x> ct
u(x, t) = 1 A ..(12)
—[f(x+ct)—f(ct—x)]+—f g(t)dr, x <ct.
2 2¢ Jop_x
For the existence of the solution u, the function f should be twice continuously
differentiable and g to be continuously differentiable.

For the solution u(x, t) to be continuous,

u(ct+0,t) =u(ct —0,t),

2ct 2ct

1 1
g@dr =5 [f@et) = fO] +5- | gl

0

1 1
or,z[f(th) + f(0)] +ZJ

0
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or, f(0) = 0.

Again, for u,, U, Uy, Uy to be continuous at x = ct,

u,(ct+0,t) —u,(ct —0,t) = —%[g(O) +g(0)] = —%g(O) — (1),

(et +0,6) = (et = 0,6) = —[9(0) + g(®)] = g(0) = 0,
e (et 4 0,6) = aet = 0,0) = 5[0+ F"(0)] = f"(0) =,

m4a+0¢y—w4a—om)=%f%o+f(m]=ﬂxm=o.

=~ f(0) =g(0) = f"(0) = 0.

For example, let us take the problem (cf. Stavroulakis etal. [5]),

Uer = Uxy, 0<x<oo, t>0’
3 3 5
u(x’o):f(x)) 0Sx<00, f(X): Cos X, 7<x<7
0 otherwi se

u(x,00) =0 0<x< oo, u(0,t) =0, t = 0.

The solution is thus given by

e+ +fax—D], x>t

u(x,t) =4,
e+ -fE-0] x<t
A A
T
t=0 =T
t72
25 5 75 10 125 15 17.5 25 5 75 10 125 15 175
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. 5 . 71
T2 T2
5 10 15 20 25 5 10 15 20 25
Fig. 6
Semi-Infinite string with a free end:
Homogeneous boundary condition
Consider the PDE
Upe = CPUyy, 0<x< oo, t>0,

u(x,0)=f(x), 0<x< o,
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u:(x,0) = g(x), 0<x< oo,
u,(0,t) =0, 0<t<oo,
For x > ct, the solution is same as D’Alembert’s solution and is given by equ. (10)and (11).
D’ Alembert’s solution gives
u(x, t) =yP(x+ct) + p(x — ct),
U, (x, t) =Y’ (x + ct) + ¢'(x — ct).
Now, we apply the B.C u,.(0,t) = 0. This produces
Y'(ct) + @' (—ct) =0 ...(13)
On integration of (13) w.r.t ¢,
Y(ct) — p(—ct) =D,Disintegraticonstant
Lettinga = —ct, ¢(a) =Y (—a) — D,a < 0.

Replacing now a by x — ct, we find

@(x—ct) =y(ct—x)—D =%f(ct—x)+%joc _xg(r)dr—g.

Therefore,
u(x, t)

) %[f(x +ct)+ f(x—ct)] + zj::tg(r)dr, x > ct s

%[f(x +ct) + f(ct —x)] + %U:HC g(t)dr + _]: _xg(r)dr , x <ct.

For the solution to exists, f must be twice continuously differentiable and g must be
continuously differentiable.

It is clear from (14) that u(x, t) is continuous at x = ct.

The continuity of u,, U, Uy, U at X = ct implies the following conditions:
1 ! ! !
u,(ct +0,t) —u,(ct —0,t) = E[f 0+ f'(0)] =f'(0) =0,

ug(ct +0,8) —u(ct = 0,8) =5 [=f'(0) = f(0)] = —cf'(0) = 0,

N| O

1 1
e (€t +0,8) = e (ct = 0,8) = == [g'(0) + g' ()] = == g'(0) = 0,
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wee (et +0,6) — uge(ct — 0,8) =~ [¢(0) + g'(0)] = —cg'(0) = 0.

2c
- £'(0) = g'(0) = 0.
Non-homogeneous boundary condition
i) Consider the problem
Upe = C2Uyy, 0<x<oo, t >0,

ulx,0) =f(x), 0=<x<oo
u:(x,0) = g(x), 0<x< oo,
u(0,t) = p(t), t=>0.
For x > ct, the solution is given by equ. (10)and (11).
Using the boundary condition on D’Alembert’s solution we find,
u(0,t) = p(t) = P(ct) + p(=ct),
or,p(—ct) = p(t) — P(ct).
a

Letting « = —ct, we find, p(a) = p (— —) —Y(—a),a <0.

c

Replacing a by x — ct, (x —ct) = p (t — %) —Y(ct — x).

x+ct

l[f(x+ct)+f(x—ct)]+if g(t)dr, x > ct
’ 26 Jxet .. (15)

u(x,t) = 1 [x+et x
E[f(x + ct) — f(ct — x)] +cht_x g(r)dr+p(t _E)’ x < ct.

For u, Uy, Us, Uy, U to be continuous at x = ct, the following conditions are to be satisfied:
1
u(ct+0,t) —u(ct —0,t) = E[f(O + f(0)] —p(t—1t)=f(0)—p(0) =0,
1 1, 1 1,
(et +0,0) —w(ct = 0,6) = == [g(0) + g(0)] +-p'(0) = —=g(0) + =p'(0) = 0,
1 1, 1 1,
(et +0,8) —u (et = 0,6) = - [g(0) + g(O)] = <p'(®) = g(0) —=p'(0) = 0,

(et +0,6) ~ gyt = 0,6) = 2 [F'(0) 4 F'(0)] ~ 57" (0) = f"(0) = 5" (@) = 0,
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e (et +0,6) = (et = 0,6) = S [£"(0) + £ (0)] = p"(0) = 0.

=~ f(0)=p0), g =p'0), ["(0)= Clzp"(o)-
i ) Now, consider the problem
Upe = CPUyy, 0<x<oo,t>0,
ux,0) =f(x), 0=<x<oo,
u(x,0) =gx), 0=<x<oo
u,(0,t) = q(t), t=>0.
For x > ct, the solution is given by equ. (10)and (11).

On application of B.C on D’Alembert’s solution, we find

u,(0,8) = q(t) = ¢P'(ct) + ¢'(—ct) ... (16)
Integrating (16) w.r.tt,

t

Y(ct) — p(—ct) = ch(r)dr + D.

0

Lettinga = —ct, Y(—a) — p(a) = ¢ fo_?q(r)dr + D,

a

Cc

p(@) =yY(—a) — cf q(t)dt —D,a < 0.

0
Replacing a by x — ct, we find

X
t—¢

@(x —ct) =yY(ct —x) — cf q(t)dt — D.

0

u(x, t)
1 1 x+ct
5[f(x+ct)+f(x—ct)]+zfx_ct g(0)dr, x > ct

= t—

X
c

1 1 x+ct ct—x
kE [f(x+ct)+ f(ct —x)]+ ZU;) g(t)dr + _];) g(‘[)d‘[l —c E! q(t)dr,
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For the solution to exist, the function f must be twice continuously differentiable and g
must be differentiable.

It is noted that the function u(x, t) is continuous at x = ct.

For uy, Us, Uy, U tO be continuous at x = ct, the following conditions must hold:
1
ur(et +0,8) —uy(ct = 0,6) =5 [f'(0) + f'(0)] — q(0) = f'(0) —q(0) = 0,
c
u(ct +0,t) —u(ct —0,t) = 5[—f’(0) — f'(0)] + ¢cq(0) = —cf'(0) + cq(0) = 0,

1 1 1 1
e (Ct +0,6) = her(ct = 0,6) = = 5-[g'(0) + g' (D] +-q'(0) = == g'(0) +-q'(0)
= 0’

uge(ct +0,t) — uge(ct = 0,8) = —% [9"(0) + 9" (0)] + ¢q'(0) = —cg’(0) + cq'(0) = 0.

=~ f'(0) =q(0), g'(0) =4q'(0).

Vibrating finite string with fixed end:

Homogeneous boundary conditions:

Let us consider a vibrating string of length [ fixed at both ends. The boundary value problem
is

Upe = C2Uyy, 0<x<l, t>0,
u(x, 0) = f(x), 0<x<|
u:(x,0) = g(x), 0<x<l|
u(0,t) = 0,u(l,t) =0, t>0.
The D’ Alembert’s solution of the wave equation is
u(x,t) = Y(x +ct) + p(x —ct)....(18)
where
YO =2fO+=[Fgmdr+2,  0<E<]

. o b . (19)
w(n)=§f(n)—zfog(r)dr—5, 0<n<l.

Therefore,
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x+ct

1 1
u(x,t) = > [f(x+ct)+ f(x—ct)] + zf g(t)dr,...(20)

x—ct

0<x+ct<l and 0 <x—ct <l[Since functions f and g are defined only over the
interval [0, [] ].

The solution of the given problem is thus uniquely determined only for 0 <t <

. l-x x
ni n{—,—} ,x < L.
(o] c

We need to find solution for x + ¢t > land x < ct.
Applying the B.Cs u(0,t) = 0 = u(l,t), we find
u(0,t) = yY(ct) + p(—ct) =0,t =0,
ul,Lt) =yYU+ct)+ ol —ct) =0,t >0.
~P(ct) = —p(—ct), Y +ct) =—p( —ct),t =0.
If welet @ = —ct, p(a) = —y¥(—a), a <0. ..(21)
lfweleta =1+ct,Y(a) =—9pRl—a), a=1...(22)

Replacing a by  in (21), we obtain

oM = —yY(-n) = —% f(=n) —%fo_ng(r)dr —%0 <-n<lLor—-1<n<0..(23)

Now, replacing a by ¢ in (21), we obtain

1 1 (2 D
WO =@ -9 =5 f@-D+5 [ g@dr+z,0<2-¢<L
0

or 1 <¢&<21...(24)

Therefore, the range of 1 and ¢ is now extended to [<&<2l and -I<1n <0
respectively.

For—2l <n < -,

1 1 2l4+n D
o) =—wm =3 f@l+m -5 | g@dr-7,
and for 21 < & < 31,
1 1 52 D
VO = 0@l -8 =5 fG-W+5 [ g@dr+

Hence, range of iy and ¢ is extended to 2] < ¢ < 3l and —21 < n < —l respectively.
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Continuing in this way, ¥ () can be defined for all ¢ = 0 and @(n) can be defined for all
n<0.

A ¢
x + ct = 3l x —ct =3l
x +ct =21 x —ct =21
X+ ct = x =ct
\ X >
0 0,1)
x—ct= x=—ct

Fig. 7
Non- Homogeneous boundary conditions:

Consider the problem
Upr = C2Uyy, 0<x<Lt>0,
u(x,0) = f(x), 0<x<]|
u:(x,0) = g(x), 0<x<l|
u(0,t) = p(t), u(l,t) = q(t), t=>0.
For theregion 0 < x + ct < [,0 < x — ct < [, the solution is given by (18) and (19).
In order to obtain solution for large t, we apply the boundary conditions.
~P(et) + p(—ct) = p(t), t=>0,..(25)
Y+ ct) + (Ll —ct) = q(t), t=>0. ..(26)

Setting @ = —ct, we find from (25)

pl@)=p (— %) —Y(—a), a < 0.

Setting @ = [ + ct, we find from (25)
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Y(a) =q (%) — o2l — a), a =l

Like the case of homogeneous boundary conditions, the expressions of functions ¥ and ¢
can be determined for all ¢ = 0 and for all n < 0 respectively.

o) =p (- D) ~wem =p(-1) -3 rCm - %fo_ngu)dr —20s-ysL

or—1<1n<0,..(27)

£—1

v©O=a()-p-=q(=—

1 1 (2 D
T)_Ef(ZZ_EHZfO g(dr + -,

0 <2l-¢<lorl<&<2,..(28)

21+

)+1f(2z+ )—if (D)dr — 2
2 Yoo, 9 2’

Cc

@) =p(—g) —p(=n) = p(—ﬂ) —q(

c

—2l<n<—-1..(29)

v©=a(==)- 0@ -9

=q(gzl)—p<§;21>+%f(€—2l)+2—1Cf_21g(r)dr+%

21 < & <31,..(30)

Problems:

Multiple Choice Questions:

1. Let u = Y(x,t) be the solution to the initial value problem u; = u,, for —0 <x <

oo,t > 0 with u(x,0) = si m,u;(x,0) = cosx, then the value of Y (g%) is

V3 1 1
—_—, b)—, —, d) 1.
Sol. The D’Alembert’s solution is
1 1 x+ct
ulx,t) ==[f(x+ct) + f(x —ct)] + —f g(t)dr,
2 2€ Jo_ ot

where f(x) =sin,g(x) =cosx,c = 1.
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T T
276 /i1

1/;(?%):%[51 g+%)+si %—g)]+%f 7tg(r)dr=sing—+%sirr

T
2 6

V3
7.

REE

Ans (a)

2. The solution of the initial value problem u;; = 4u,,, t > 0,—00 < x < oo, satisfying the
conditions u(x,0) = x,u;(x,0) = 0is

o
a) x, b) > c)2x, d) 2t

The D’ Alembert’s solution is given by

x+ct

1 1
u(x,t) = > [fx+ct)+ f(x—ct)] + zf g(t)dr

x—ct

where f(x) = x,g(x) =0,c = 2.
~u(x,t) =ulx,t) = %[(x +2t) + (x — 2t)] = «x.

Ans (a)
3. Determine the solution of the initial boundary value problem
U = 4Uyy, x>0,t>0,
u(x,0) = [si x|, x =0,
u(x,0) =0, x =0,
u(0,t) =0, t=>0.
The PDE corresponds semi-infinite vibrating string with fixed end.

The solution is given by

x+ct

%[f(x+6t)+f(x—ct)]+%j;_ct g(Ddr, x>ct

u(x,t) =

)

E[f(x +ct) — f(ct —x)] + %j::tg(r)dr, x < ct.

where f(x) = [si x|, g(x) = 0,c = 2.
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l[Isiltjx+2t)|+|siltjx—21f)|], x > 2t
u(x, t) = 2
5[|sn@x+2t)|— |sif2t —x)|], x <2t

4. Solve the initial value problem described by
Upe = C2Uyy, x>0,t>0,
u(x,0) =0, x =0,
u(x,0) =0, x =0,
u(0,t) =sirt, t>0.
The PDE corresponds semi-infinite vibrating string with free end (Non-Homogeneous B.C).

The solution is given by

l[f(x+ct)+f(x—cif)]+—jx+cg(f)alf, x> ct
2 2c ). _
u(x,t) = x—ct

1 x+ct
E[f(x+ct) — f(ct —x)] +zfct_x g(T)dT+p(t—§), x < ct,

where f(x) = 0,g(x) = 0,p(t) = sirt.

0, x > ct

u(x,t) = {Si r(t—{); x < ct.

c

5. Find the solution of the initial boundary value problem

U = Uyy, x>0,t>0,

u(x,0) = cos(nz—x), x =0,

u(x,0) =0, x>0,
u,(0,t) =0, t>0.
The PDE corresponds semi-infinite vibrating string with free end (Homogeneous B.C).

The solution is given by

x+ct

1 1
E[f(x+ct)+f(x—ct)]+zf g(t)dr, x > ct

u(x, t) — x—ct

x+ct ct—x

g(t)dr +f g(t)dr
0

1 1
E[f(x+ct)+f(ct—x)]+ZU0

, x <ct

21 Ranita Roy, Assistant Professor, Department of Mathematics, Serampore College



where f(x) = cos(%),g(x) =0,c=1.

l[cos{w} + cos{w}] = cos(ﬂ) cos(n—t), x>t

cu ) =12 2 2 2 2
%[cos{@} + cos{@}] = cos(%) cos(%), x < t,
or, u(x,t) = cos(%) cos(%t)

6. Determine the solution of the following finite vibrating string problem:

Upr = C2Uyy, 0<x<Lt>0,

X
u(x,0) = si T)' 0<x<l

u:(x,0) =0, 0<x<|
u(0,t) =0 =u(l,t), t=>0.
The solution is given by

u(x,t) = P(x +ct) + p(x — ct)

where
()—1<>+ifg()d 2 o<e<
Y@ =5/ Zcogr T+, <&<|,
1 1 (" D
<p(n)=§f(n)—zjog(r)dr—5, 0<n<l
1 2 D
VO =5 f@-D+5 [ swirtz 1sis2
1 1 (" D
<p(n)=—§f(—n)—zf0 g(r)dr—? -1<n<0,
1 1 8 D
VO =5 fE-Wro | g@drty, AsEsa
1 1 2l+n D
<p(n)=§f(21+n)—zf0 g(r)dr—?—ZlSnS—l,
and so on.

Here f(x) = si n(”—lx),g(x) = 0.
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The solution is thus

1 né\ D
== — )+ = <&<
Y& 251r<l) > 0=¢<],
1 mn\ D
<p(n)=551r(7)—5, 0<n<l|
n(2l—-¢yYy D 1  (mé&\ D
— _ S =)+ = <é&<
9@ = —gsif A4 2= ZaiT) 4D, isesa
n(=1) _L n D
= _—— — — == —-l<n<
o) zsn{ =>s l) — l<n<o0,
(& — Zl)} D 1 _r<1rf> D
i )+ = <é&<
Y(§) = 1{ S =5sinT )ty 2s$<3l
n(2l+n)y D 1 _ mny D
= _ — = —)—=,-2l<n< -
() S”{ l } 2 25”(1) g Al=n=-L
and so on.
The solution is given by
1[  7(x+ct) - m(x —ct) - mx  Tct
u(xt)—lp(x+ct)+(p(x—ct)— sin i +sin l =51nl—cosT

forallxst0<x<I[t>=0.
7. Solve the PDE
Upr = C%Usyy, 0<x<Lt=>0,
u(0,t) =0 =u(lt), t>0,
u(x,O)zO,ut(x,O)zbsiﬁZ—x, 0<x<L
The solution is given by
u(x,t) =yP(x+ct) + (x —ct),

where

1 1 (¢ p D 0<i<l
VO =5 @+ 5| g@dr+z,  0sfsL
om) = %f(n) —%Lng(r)dr—e 0<n<l

2 )
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1 1 2 D
VO =3 f@-D+5 | g@drty, Isfs2

1 1 (7" D
Mm=—§ﬂﬂﬂ—zﬁ gdr -5,  -l<n<0,
1 1 &2 D
¢(f)=§f(f—21)+zj; g@dr+-,  2<§<3
2147

1 D
e J— — — —_— — < < —
o) 2f@P+m ZCL g(r)dr 2,Zl_n_ l,

and so on.

Here f(x) = 0,g(x) = bsi ﬁ”—lx.

w03 o s 3= o) 305+ o3

OS§SL
1 (7 D bl \ 1 3mn mny 8
oD () e
o) =—5:] 9@de—3 grc) [3°°°\ 0 cos(T) +3
0<n<l|

06 = = [ g+ 2 () Peosf B o B0 9],

= <8nc) [3 cos<37lT€> -3 cos<ﬂl€> +§] + g, [<¢<2l

o =~ [~ o2 3o+ -

—-1<n<0,

0= [ oo+ = (L) feosf Y s confrET20 8] 2

(ol )98 wscen

2147 D
mm—--%” g@dr —
L i I
B (87Tc> [3 COSGT’) -3 cos( 3] —Z, =2l<n< -l
and so on.
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The solution is

u(x, t) =yP(x+ct) + p(x —ct)
bl l {3n(x + ct)} {371(35 - ct)} {n(x + ct)}
= cos —cos{—————r —3cos{——
8mc l l l

m(x — ct) bl 1 3mx  3mct - mx  T7ct
+ 3 cos = [5111 Sim —3sinr—sin—
l 41c l l l l

forallxst0<x<1[t=>=0.

Non-homogeneous wave equation (Infinite string):

Let a string vibrates under an external force F(x, t). The resulting motion is then
Upr = C2Uyy + F(x, 1), —00 < x < 00, t>0,
u(x,0) = f(x), u:(x,0) = g(x), —oo<x < oo,

Consider the transformation y = ct.

dy

. — — — 2
oo ut — uya — Cuy,utt =C uyy.

The given PDE becomes

y *
czuyy =c®u,, +F (x,;),or Uy — Uy = ——a =F*(x,y) ..(1)
The initial conditions are

u(®,0) = £(0), uy(x,0) = £9() = g°(0). .(2)

r
P(x0,Y0)
D
> x
0 A(xg — ¥0,0) B(xg + ¥0,0)
Fig. 8
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The characteristic equations x + ct = cons tof the given PDE becomes x + y = const Let
P(xy, Vo) be a point on the xy —plane. Let PQ be perpendicular to x —axis with foot of the
perpendicular Q(x,,0). Let PB be the line x + y = xq + y, and PA be the line x —y =
Xo — Yo A= (xg—19,0),B = (xg+ yp,0). Let D be the region bounded by the triangle
PAB.

[Green’s Theorem: If D be a closed region in the xy —plane bounded by a simple closed curve

C.If M and N are continuous functions of x,y having continuous first order partial
derivatives, then [. (Mdx + Ndy) = [[, (Z—Z - Z—IZ) dxdy.]

By Green’s theorem, we have for the region D bounded by triangle PAB,

.U (uxx — uyy)dxdy = f(uydx + uxdy),
L

D

L is the boundary of D.

Now, [, (uydx +u,dy) = fLO (uydx + u,dy) + le (uydx + u,dy) + sz (uydx + u,dy).

Xo+Yo Xo+Yo
f(uydx +u,dy) = f (uydx + u,dy) = f uydx [+~ onx —axi sy = 0]
Lo Xo—Yo X0—Yo

j(uydx +udy) = j(—uydy — uydx) [~ onlLy,x +y = xo + yo,0rdx = —dy]
Ly Ly

=— f(uxdx +u,dy) = — j du = ul,, = —{ulxo,yo) — ulxe + ¥0,0)}
Ly Ly

= u(xy + ¥o, 0) — u(xg, yo)-

f(uydx + u,dy) = f(uydy + uydx) [+ onLy,x —y = xy — Yo, 0rdx = dy]
LZ Ll

= j du = uIL2 = u(xo — Y0, 0) — u(xg, yo)-

Ly
XotYo

[ Gyt edy) = [y + 70,0) = uCx, 70) + uo = 70,0) = uCa, 30)

L Xo—Yo
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XotYo

= u(xy + v0,0) + u(xg — y0,0) — 2u(xg, yo) + f uydx.

Xo—Yo
Xo+Yo
] G = wyy)aixdy = o + 90 + o = y0) - Gy + [ 9" @ex,
D Xo0—Yo
Xo+Yo
or, ff F*(x,y)dxdy = f(xo + yo) + f(xo — ¥0) — 2u(x¢,¥o) + f g (x)dx,
D Xo—Yo
Xo+Yo
oo, y0) = 5[ (o +30) + G~y +5 [ g7
Xo—Yo

Yo X=—Yy+Xot+Yo

_% f f F*(x,y)dxdy ..(3)

y=0 x=y+x0—Yo
Since x,, Y, are chosen arbitrarily, replace x, by x and y, by y in (3), we obtain u(x, y).

(3) also takes the form
x0+ct0

1 1
UG t) = 5 [fCro + ct) + fOo — et +5- | g(@dr

Xg—cCto
to x=—ct+xg+cty

)] (e

t=0 x=ct+xg—cCty

Xotcty

= S [f G0 + cto) + f (xo — cto)] + o f g(r)dt

Xg—Cto
tog x=—ct+xg+cty

N z_lc f j F(x, Odxdt. ...(4)

t=0 x=ct+xg—cty

Replacing x, by x and t, by t in (4), we obtain u(x, t).

Problem:
1. Solve the initial value problem

Upe — C?Uyy = €%, x ER,
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u(x,0) = 5, u.(x,0) = x?, X €R.

x0+ct0
1 1
UG t) = 5 [fCro + ct) + fOo — et +5- | g(@dr
xo—cto
to x=—ct+x0+ct0
1
+— f f F(x,t)dxdt.
2c
t=0 x=ct+x0—ct0
to x=—ct+x0+ct0 to x=—ct+x0+ct0
Now, f f F(x,t)dxdt = f f e*dxdt
t=0 x=ct+x0—ct0 t=0 x=ct+x0—ct0
to
e*o
— f [e—ct+x0+ct0 — eCt+x0—Ct0]dt — _[_2 JL eCto + e—Cto]

c

t=0
4e*o ct
= si nA—>.
c 2
x0+ct0 x0+ct0
2 1 3 3 2ty 242 2
g(@)dr = T4dt = 5[(x0 + cty) — (xg — cty)’] = TWC ts — 3x5].
xo—cto xO_CtO
1 to 2e*0  _ct,
u(xo, to) = B [5+ 5] + 3(7c2t§ —3x3) + 7 Si HHT'

Since X, t, are arbitrary point in the xt — plane, replacing x, by x and t, by t, we find

t 2e”* ct
u(x,t) =5+ =(7c?*t? — 3x?) + —si nh—.
3 c? 2

2. Solve the IVP:
Upr — C2Uyy = xe°, X ER,

u(x,0) =sinm,u(x,0) =0, x ER.
x0+ct0

1 1
UGt ) = 5[ G0 + cto) + fo = cto)] +5- [ g(@er

Xg—Cto
to x=—ct+xg+cty

1
+— j f F(x, t)dxdt.
2c

t=0 x=ct+xg—cty

to x=—ct+xg+cty

1
[sifixy + cty) + sifixy — cty)] + = f f xetdxdt

t=0 x=ct+xg—cty

u(xg, tg) =

N| =
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to

1
= sim,coscty) + = j et{(—ct + xo + cty)? — (ct + xo — cty)?} dt
t=0

to

1
= simx, coscty) + ye j et{—4cxyt + 4cxgto}dt = si g cos(cty) + xg(eto —ty — 1)
t=0

u(x,t) =si mcosct) + x(et —t —1).

Total Energy of a String fixed at the points x = 0 and x = [:

Let the string be under small transverse vibration. Let T be the tension of the uniform string
of density p.

A U
ds
;x
x[=0 dx x =1
1 ou\2
The K.E. of an element dx of the string is given byzpdx (E) .
l l
Tt]KE—lfau d—Tfl [__Z_T]
oa..—zp Ot x—2 c2 -C—p.
0 0

Now, ds = /(dx)? + (du)z,or,g = [1+ (d—u)z =1 +l(d—u)2 + =1 +% (d—u)z.

dx 2

ds = 1+1<du)2 d
S = 2 dx X.

Due to the motion the stretch in element dx of the string is

Hence, work done by this element dx is given by

T <6u)2 p
2 \0x X
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l
T
Tot alorkdone = Tot alP.E.= fi(—
0

l
KE+PE—Tf1 d+fT Tflau <8u>2d
T c2 X 2 2 c2 6t 0x I
0

0

Linear Operator:
An operator L is said to be linear if it satisfies

Llau + Bv] = aL[u] + BL[v], aandpf arescal ars

E.g.,
Laplace’s equation: O%u + e 0 can be expressed as
ax2 = 9y?
02 02
Llu] = 0 wherel = 6_+W
Wave equation: 32—1; = 222 can be expressed as
02 , 92
M[u] = 0 whereM =g~ c P

ou 2
Hear equation: i k > can be expressed as

N[u] = 0 whereN = i— k—.
L,M, N are all linear operators.
Superposition Principle:
Let us consider the following initial value problem
U = iUy, + H(x, 1), 0<x<Lt>0,
u(x,0) = g,(x), u:(x,0) = g(x), 0<x<l ..(4)

u(0,t) = g5(t), u(l,t) = g,(t), t=>0.

(A) canbe written in the operator form as
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Ml [‘U.] = 91,

M,[u] = g,
M;[u] = g5
My[u] = g4,
where
ik ik
L= e czﬁ,Ml[u] = u(x,0), M,[u] = u.(x,0), Ms[u] = u(0,t), M [u] = u(l,t).

Let us now consider a more generalized problem (B)

Llu] = H,
My[ul =g, )
My[u] = gy, . (B)
>

My [u] = gn-1. Y,

Due to linearity of the operators (B) can be rewritten as combination of the following
subproblems:

Lluy] =H,
Mifu]=0, )
Mz[ul] = 0, (C)
>
My _q [us] =0, Y,
L[uZ] = 0!
M, [uz] = g4, )
Mz[“,z] =0, (D)
>

M, _; [u,] =0, Y,

Llu,] =0,
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Ml[un] = 0!
MZ [un] = 01 > a (E)
My, [upn] = gn-1. %

Then solution of (B) is given by
n
u= z u; ...(F)
i=1

Let us now consider one of the subproblem, say, (C). Suppose there exists a sequence of
functions @4, ¢, . ., (finite or infinite) which satisfy the homogeneous system

Llpi] =0, h

M9l = 0, - (G)

and g, is expressed as
g1 = ciMy[@q] + oMy [@o] + -+ + My [y ] + -+ (H)
Then the linear combination
Uy = €11 + @03 + -+ Cppn +- (1)
is the solution of (D).

If there be infinite no. of terms in the expression of u, in (I), then the series need to be
convergent and sufficiently differentiable.

Separation of Variables for solving initial boundary value problem:
Consider the second-order linear homogeneous PDE
a'uyryr + b'uyry + c'uyry +d'uy +e'uy + flu=10 .. (1)
where a’,b’,c',d’, e’, f' are all functions of x" and y'.
We transform the equ. (1) into canonical form by the following transformation
x=xx"y"), y=y&\y) ..(2)
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x dx

S(xy) ax' 6_y’
so that saiyn |y oy * 0.
ax' oy’

Let under the transformation(2), (1) is transformed into the canonical form
AUyy + CUyy, +du, +euy, + fu=0 ..(3)
where the coefficients a, ¢, d, e, f all are functions of x, y.
(3) is hyperbolicif a + ¢ = 0, parabolicif a = 0 or ¢ = 0, hyperbolicif a = c.
Let us suppose (3) has a solution of the form
ulx,y) =XxYQ) .4

Uy = X'Y, Uy = XY, uy, = XY',up,, = XY" ...(5)
With the expressions of (4) and (5), the PDE (3) takes the form

aX"Y + cXY" +dX'Y +eXY' + fXY =0. ..(6)

Let us further suppose that the following arrangement of (6) can be made.

.00 (%) + 020 (3 )+ s | == [0 () + 2200 (3) # 2500 )

The left side of (7) is a function of x only and the right side of (7) is a function of y only.

On differentiation of (7) w.r.t x,

d II !
Tx [al(x) (X7> + a,(x) <X7> + a3 (x) l =0. ..(8)

On integration of (8) w.r.t. x,

XII XI
a;(x) <7> + a,(x) (7> + as;(x) =k, -.(9)

k being the separation constant.
From (7) and (9), we find
YII YI
b~ )+ (5 | +bs(0) = —k. ..(10)

(9) and (10) gives
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a1 (X" + az(x)X" + (az(x) —k)X =0, (1)

bi(MY" + b,(y)Y' + (b3(y) — k)Y = 0.

Solving the ODE in (11) we obtain X(x) and Y (y). Hence u(x, y) is obtained.

Finite Vibrating String:

Homogeneous wave equation with homogeneous boundary conditions:

Let a homogeneous string of tension T be stretched along the x —axis at x = 0 and x = L.
Let the string be under transverse vibration. If no external force is present, the problem is
given by

Upe = CPUy,, 0<x <], t >0,
ulx,0) = f(x), u(x0 =gk), 0=<x<li

u(0,t) =0=u(l,t), t>0.
f and g are respectively the initial displacement and initial velocity.
Let u(x, t) be expressed as

ulx,t) =X)T(). ..(12)
Substituting (12) into the given PDE, we find

X@)T"(t) = c?X"(x)T(¢),

X” B T” B
N T T T

k, ..(13)
k is the separation constant.
Now three cases may arise.
Case-l: Let k > 0. Take k = A2. This produces
X" = 22X, 0r X(x) = Ae?* + Be™**,
T" = c?)%T,or T(t) = Ce’t + De A,
~u(x,t) = (Ae®™ + Be™*)(Ce’t + De ).
The B.Csu(0,t) = 0 = u(l, t) give

A+B =0,
* . (14)

34 Ranita Roy, Assistant Professor, Department of Mathematics, Serampore College



Ae't + Be™lt =,

1 1

The coefficient determinant of system (14) is olt | # 0. Hence, the system (14)

oLt
possesses only trivial solution A = B = 0. Hence, only trivial solution is found in this case.

Case-ll: Let k = 0.
X" =0,0r X(x) = A+ Bx,

T"(t) =0,0or T(t) = C + Dt.

~u(x,t) = (A + Bx)(C + Dt).
On application of B.Csu(0,t) = 0 = u(l, t),

A=0=B8B.
Hence, only trivial solution is found in this case also.
Case-lll: Let k < 0. Take k = —22.
~ X" =—2%X,0or X(x) = AcosAx + B si nlx,
T"(t) = —22¢?T,or T(t) = C cosAct + D si nict.
Now the B.Cs produce
A =0,

AcosAl+ Bsiml =0,or Bsiml=0,or si ml =0,
nmw
orln=T,nEN.

nmx

Withd =1, = nTn,Xn(x) = B, si m,x = B, si r(T)

[4,,'s are called eigen value and X,,’s are called eigen value.]

nmx ncmt ncmt
Uy (x, t) =B, si T){Cncos( l )+Dnsir< )}

l
o mmx ncmt ~ (ncmt
= si(=p) foncos( )+ busi (=)

where a,,(= B,C,), b,,(= B,D,,) arearbi tracpnstants

Since, the PDE is linear and homogeneous, by superposition principle, the solution is

u(x,t) = i u,(x, t) = i si 1(@) {an cos(nclnt> + b, si r(nclnt)} ... (15)

n
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Now, apply the I.Cs u(x,0) = f(x), u:(x,0) = g(x).

o)

s~ flx) = Zansi r(@)

n=1

= ncn mrx
andg(x) = z —)

n=1

The two above series are half range Fourier series.

‘I’lTI.'X) dx’

=21

l

b, 2 g(x )51r(—) x. ..(16)

‘I’lTI.'C
0

. q Tt t
The functions u,(x,t) = si r(n—Tc) {an cos(nc ) + b, r(g)} are called normal modes
of vibration. w, = % are called circular frequencies, or v, = % = % are called angular
frequencies.
Note: If the initial velocity u;(x, 0) = 0, then
ncmt\ | Mmux
u,(x,t) = ancos( l >51 T), n=123..,

an

or,uy(x,t) = >

si n—(x—ct) + si nn—(x+ct)] ..(17)

(17) is a stationary wave profile. At any instant t, (17) represents a sine curve of amplitude

an cos( Cl ) Thus, a wave profile of this nature does not propagate. The curve intersects

. 21 . . . .
the x —axis at x = 0,;,;, ... These points are called nodes, and the intermediate points

where the amplitude is maximum are called antinodes.

Non-homogeneous wave equation with non-homogeneous boundary conditions;

Consider the initial-boundary value problem
)
U = C°Uy + F(x), 0<x <], t>0,
u(x, 0) = f(x), ut(xl 0) = g(x)r 0 S X S l:

u(0,t) = A4, u(l,t) =B, t > 0. [Non — honogeneousB. Cs]
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Let us assume a solution of the form
ulx,t) =v(x,t) + W(x). ..(18)
Then the PDE becomes
Ve = C?0py + 2W'(x) + F(x), 0<x <1,
v(x,0)+W(kx) =f(x), 0<x<]|,
ve(x,0) =gx), 0<x<]I,
v(0,t) + W(0) = A4, v(l,t) + W() = B.
Let us now suppose W (x) to be the solution of the ODE
W' (x) + F(x) = 0, W) = A4, W) =B. ..(19)

Then v(x, t) satisfies the initial-boundary value problem

Ve — €10, =0, 0<x <, t>0, N
v(x,0)=f(x)—-Wkx)=f'(x), 0<x <1,
el
ve(x,0) =gkx), 0<x<]|,
v(0,t) = v(,t) =0, t >0. )
Solution of (20) is given by (15) and (16).
For the ODE in (19),
14 1
W'"(x) = —C—ZF(x).
On integration,
[ 1
W) = — j S F@E+K.
0
Again on integration,
x (M 1
W(x) = —f fC—ZF(f)df dn + Kx + K', K andK'arei ntegratioonstants
0 0

On application of the B.Cs, W (0) = A, W (l) = B,
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(" l

1 B-A 1 1

K’=A,B=—f fc—zF(f)df dT]+Kl+A,OTK=T+T-]- jc—zF(f)df dn
0 \o 0 \o

x (1N

weo = - | jc—le(adf an + |24 %fl j F()dg pdyx + 4
0

0 0

n

Hl f F(€)dE b dy — j f CéF(f)df dr....(21)
0 0

0

or, W(x) =

After finding W (x) by (21), u(x, t) is given by

nnx ncmt . (ncmt
u(xt)—an( {ancos< i )+bn51r< ; )}+A+

B—A
(l)x
x (N

+§ff —F(§)dE b dny — ffcizF(E)df dn, ... (22)

0 0

where a,, b,, are given by
) 1
, _/mmx
=Tff(x)51r(T)dx
0

b, = Z (x)51r(—) x. ...(23)

TlT[

Uniqueness Theorem:
There exists unique solution of the wave equation
Upe = C2Uyy, 0<x<lI, t>0,
satisfying the initial conditions
u(x,0) = f(x), u:(x,0) = g(x), 0<x<|
and the boundary conditions
u(0,t) =0, u(l,t) =0, t>0,

where u(x, t) is a twice continuously differentiable function of x and t.
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Proof: Let u;, u, be two solutions of the wave equation. Hence, u; and u, satisfy the given
initial boundary value problem.

Letv = uy — u,.
=~ v satisfies
Ver = C* sy, 0<x<lI, t >0,
v(x,0) =0, v:(x,0) =0, 0<x<l
v(0,t) = 0, v(l,t) =0, t > 0.

Our objective is to prove v(x,t) to be identically zero. To do this, consider the total energy
integral

l L
Et—T 1 (0w’ 6u _T N
©=3|[{=G) +G) x| =2 e e
0 0

Since uq,u, are twice continuously differentiable functions of x and t, v is twice
continuously differentiable function of x, t.

Now,
l L :
dE T
7 2.[ VeV + vaxt dx = j Ve Veedx + vatl fvxxvtdx
0 0 0
[~ v(,t) =0,v(0,t) =0, v.(,t) =0,v:00,t) = 0]
! l
Tf vtvtt vxxvt} dx - f{vtt c vxx}vt X = 0
0
dE
= 0,or E(t) = constant c (say).
Now,

l

E(0) = g f {Cizvg(x, 0) + v2(x, 0)} i

0
v(x,0) =0, v,(x,0) = 0. Al spv.(x,0) = 0.
~ E(0) =0,0rc=0.

~E(t) =0.
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1
T 1
Now, E(t) = Ef{c—zvf + v,?}dx = 0 whi chi spossi blidandonl yi fv, = 0 = v,.

0
v, = 0givew(x,t) = h(t).Agai nw(0,t) = 0.~ h(t) = 0,0r v(x,t) = 0.

s ug(x, t) = uy(x, t).

Non-homogeneous wave equation (Finite String):

Homogeneous boundary conditions:

Let us take the following initial-boundary value problem
Upe = C%Uyy + h(x, 1), 0<x<I, t>0,
u(x,0) = f(x), u:(x,0) =glx), 0<x </,
u(0,t) = 0= u(l,t), t>0. (HonpgeneousB.Cs)

Let us suppose that u(x, t) is of the form

0]

u(x,t) = z u, (t)si r(g) .. (24)

n=1

where u,(t) are to be determined. Note that u(x, t) as defined in (24) satisfies the B.Cs
u(0,t) = u(l,t) = 0.

Let h(x, t) be of the form

h(x,£) = i b (0) si r(@) ..(25)
n=1

Thus,

l
h,(6) =%jh(x, OsiT)dx. ..(26)
0

Assuming the series (24) to be uniformly convergent, we find uy,u,, from (24) and
substitute into the given PDE. This produces

0]

Z ) @) = _¢2 i ("T”)2 u, (£) si r(g) + i h(E) si r(g)

n=1 n=1
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o, i{u;{(t) + 20, (8)) si (@) - i ho(E) si (@) .27
n=1 n=1

where 4,, = (%)

Multiplying (27) by si r(@) and integrating over x = 0 to x = [, we obtain

W) + A2, () = hy(B). ... (28)

l
[ oo no
0

0 n #* m.

Our task is now to obtain solution of ODE (28).
Let ug, (t) be the solution of the corresponding homogeneous differential equation of (28).
s ug, (t) = Ay cosApt + By simy,t.
For particular integral u? (t), let us suppose
ub (t) = A(t) cosApt + B(t) si o,y t.
u'? (t) = —1,A(t) si m,,t + A,,B(t) cosd,,,t + A'(t) cosd,t + B'(t) si m,,t.
Choose A(t), B(t) such that
A'(t)cosA,,t + B'(t)sim,,t =0 ...(29)
'l (t) = —212,A(t) si o, t — A2, B(t) cosd,,t — 1, A'(t) si th,t + A, B’ (t) cosAp,t.

Substituting ub (t), u'?, (t), u'h, (¢) into (28), we find

1
A'(t)sim,,t + B'(t)cosd,,t = A_hm(t)' ...(30)

m
Solving (29) and (30),

h,,(t) cosA,,t

h,,(t) sim,,t
Ap)=-2—™T B'® — _
e Am
C ho(D)sin " h(1)cosi
T)S1 T T)COS T
.-.A(t)=j—% dr, B(t)=f— X
m m
0 0
o (2) 51 o (£ — 7)
T)S1 t—1
~ub (t) =f = p = dr.
m

0
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2 Uy () = U, (8) + ub, (0)

h,(t)sim,,(t — 1) I

=Amcoslmt+Bmsin1mt+f . ..(31)
Am
0
ol ) = Z )
n=1

I
s

Ay cosAyt + By sinyt
1

h,(t)sim,(t —1) _nmx
An dt ¢ si I‘(T) o oo (32)

+
o— . 3

Applying the initial conditions

f(x) = iAnsi 1(@), glx) = ilnAnsi g)

l

l
S - %ff(x)si 1(@) dx, B, = Ainlfg(x)si r(g) dx....(33)

0

Non-homogeneous boundary conditions:

Consider the problem
Upe = C%Uyy + h(x, 1), 0<x<I, t>0,
u(x,0) = f(x), u:(x,0) =glx), 0<x </,
u(0,t) = p(t), u(l,t) = q(t), t>0. (Non—honpngeneousB.Cs)
Let the solution of u(x, t) be of the form
u(x,t) =v(x,t) + wix,t). ...(34)
Substituting (34) into the PDE,
Vep — €2y = R(X,8) — Wy + Wy, 0<x <L, t>0,
v(x,0) = f(x) —w(x,0), ve(x,0) = g(x) —we(x,0), 0<x <,
v(0,t) = p(t) —w(0,1), v(l,t) = q(t) —w(0), t > 0.
Let us assume w(x, t) satisfy the PDE
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Wy =0, 0 <x <, ..(35)
w(0,t) = p(t), w(l,t) = q(t), t>0.
Integrating w,,, = 0 w.r.t x, we find
wy(x,t) = r(t).
Again, integrating w.r.t x,
w(x, t) = r(t)x + s(t).

q(t)—p(t)

Applying the B.Cs, s(t) = p(t),r(t) = l

w(x,t) = Mx +p(t). ... (36)

v(x, t) satisfies
Ver — C2Vy = h(x,t) — Wi = h(x,t), 0<x <1, t>0,

v(x,0) = f(x) —w(x,0) = f'(x), 0 <x <1 (37

e

ve(x,0) = g(x) —we(x,0) = g’'(x), 0<x <],

v(0,t) =0, v(l,t) =0, t > 0. (HomogeneousB.Cs)

Assuming h(x,t) = Y2, h,(t) si 1(”—1”) , solution of (37) is given by

t

= h,(t)sim,(t—1 nmx
vix,t) = Z A, cosA,t + B, si rﬂnt+j n(0) n )d‘[ si r(T) ..(38)
n=1

An
0
with
2 2 |
o (M _ oy ot o T _ ("
Anzjjf(x)SII‘(T)dX, Bn—mjg(x)Slr(T)dx; An_( l ) - (39)
0 0
Hence,
t) —pn(t
5 0) = Mx +p(t)

l

+

s

A, cosA,t + B, sim,t
1

_|_

h,(t)sim,(t—1) o mmx
7 drt ¢si r(T) .. (40)

O;Hﬁ
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Problems:

Determine the solution of the following initial boundary value problems:

1.
Upe = Uy, 0<x<T, t >0,
u(x,0) =0, u(x,0)=8siAx, 0<x<m,
u(0,t) =0 =u(mt), t>0.
2.
Upe = CPUy,, 0<x<T, t >0,
u(x,0) =sim, u(x,0)=x*>-mx, 0<x<m,
u(0,t) =0 =u(mt), t>0.
3.
Upr = C2Uyy, 0 < x <, t>0,
u(x,0) =cosx, u;(x,0)=0 0<x<m,
u,(0,t) =0 =u,(mt), t>0.
4,
U = CPuy, + Ax, 0<x <1, t>0,
u(x,0)=0, u(x,00=0, 0<x<1,
u(0,t) =0=u(1,t), t>0.
5.

U = CPUy, + 2%, 0<x <1, t >0,
u(x,0)=x, u(x,00=0, 0<x<1,
u(0,t) =0, u(mt) =1, t>0.
Heat- Conduction Problem:

Homogeneous boundary conditions

Let us first consider a homogeneous rod of length . Let us further assume the rod to be thin
enough that the heat is distributed equally over the cross —section at time t. The surface of
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the rod is insulated so that there is no heat loss through the boundary. The temperature of
the rod is then governed by the following initial boundary value problem:

U = ki, 0<x<l, t>0,
u(0,t) =0 =u(l,¢t), t >0, [HonogeneousB.Cs]

u(x,0) =f(x), 0<x<lL

Let us separate the variables x, t of u as
u(x, t) = X(x)T(t).
~uy = X()T'(t), u, = X'(0)T(t), Uy = X" ()T (t).

Substituting the expressions of u;, u,, into the PDE, we find

kX" ()T (6) = X()T (1),

X"(x)  T'(t)
XG) T kT()

= A(listheseparati @mnstant

Case-l: Let A > 0. Take A = p2.
W X" (%) = uPX(x),or X(x) = (Ae* + Be™H¥),
T'(t) = kpT(¢), or T(t) = CekHt.
u(x, t) = CekH*t(Ael* + Be™H*) = eki*t(A'el* + B'e~#*)[A' = CA, B’ = CB].
With the B.Cs u(0,t) = 0 = u(l, t),
A'+B =0, Alett + B'e=H = .

The coefficient determinant of the system is | 1 1 | which is not equal to zero. Hence,

el oM
only trivial solution A" = B’ = 0 exists.

Hence, in this case u = 0.
Case-ll: Let A = 0.
~X"(x) =0,0or X(x) = (A + Bx),
T'(t) =0,T(t) =C.
~u(x,t) =(A+Bx)C =(A"+B'x) [A' =CA,B' = CB].
Using the B.Cs, we find A = 0, B = 0.
Hence, this case also produces trivial solution.
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Case-lll: Let A < 0. Let A = —p?.
2 X" (x) = —p?X(x),or, X(x) = (Acosux + Bsi ux),
T'(t) = —ku?T(t), or T(t) = Ce *H*t,
~ulx,t) = Ce ™ t(Acosux + Bsimx) = e **t(acosux + bsimx)[a = AC,b = BC].
Applying the B.Cs u(0,t) = u(l,t) = 0, we find
a=0, bsimul =0,

or,simul=0=simn[b+ 0,otherw senl ytrivisbl uti dsf ound,

nm
or Uy, =T,n € N.

- 2 q
o Uy (x, t) = bye *Hntsinu, x.

By principle of superposition,

u(x, t) = z u,(x,t) = z bpe ken’tsinu x . ... (1)
n=0 n=0

With the I.Cu(x,0) = f(x),0 < x < [, we obtain the following result

f(x) = Z b, sinu,x, ..(2)
n=0

(1) is a half range Fourier series. Hence, b, is given by

2 _
b, = Tff(x)m nu,x dx. ... (3)

Non-homogeneous boundary conditions:

a) Consider the heat conduction equation
U = ki, 0<x<l, t>0,
u(0,t) =0, u(l,t) = uy, t >0, [Non—honpgeneousB.Cs]
u(x,0)=f(x), 0<x<lL
Let us suppose u(x,t) = v(x,t) + W(x).

Then,
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v = kvy, + kW' (x), 0<x<l, t>0,
v(0,t) = —W(0), v(l,t) =uy —W(), t>0,
v(x,0) = f(x) — W(x), 0<x<l
Let us again suppose W (x) satisfy the BVP
W'"(x) =0, w(0) =0, W) =uy. ...(4)
Solution of (4) is

W(x) =C, + Cyx,C;,C, arearbi tracpnstants

SW0)=0, WO =uy, C =0 C,= #
S W) = %
v(x, t) then satisfies the PDE
Ve =kvyy, 0<x<I[, t>0,
v(0,t) =0, v(l,t) =0, t>0, ..(5)

UgX
v(x,O)zf(x)—Tzf’(x), 0<x<L

Solution of (5) is given by

v(x,t) = z bye ken’tsinux ...(6)
n=0
with

l

2 . _ nm

b, = Tff (%) si nu,x dx, Pn = - (7)
0

b) Let the boundary conditions be

U = kuyy, 0<x<l, t>0,

u(0,t) =0, u, (L, t) = uy, t >0, [Non—honpgeneousB.Cs]
u(x,0)=f(x), 0<x<lL

Let us assume a solution of the form u(x, t) = v(x,t) + W(x).

v = kv, + KW' (X), 0<x<l| t>0,
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v(0,t) = =W (0), v () = uy —W'(D), t>0,
v(x,0)=f(x)—-Wkx)=f'(x), 0<x<L
Let us suppose W (x) is the solution of the BVP
W' (x) =0, w'(0) =0, w'(d) = uyg. ... (8)
Solution of the BVP is W (x) = ugyx.
v(x,t) then satisfies
Ve = kv, 0<x<I[, t>0,
v(0,t) = 0, v ([,t) =0, t>0, -+ (9)
v(x,0) = f(x) —ugx = f'(x), 0<x<l
For the solution v(x, t), let us take v(x,t) = X(x)T(¢t).
Taking the separation constant A = —u? < 0, we obtain
v(x, t) = e ¥t (acosux + bsi mx).
With the B.Cs v(0,t) = 0, v,(l,t) = 0, we find
a=0, bcosul = 0,or cosul =0 [~ b # 0].

_(@n+Dr

Hn=—"71
w vy (x,t) = bye k't si g x.
v(x, t) = z bye~ken’t sinyx ... (10)

n=0

Now apply the .Cv(x,0) = f'(x),

[%s) l
2
f'x) = z b, sinu,x,or b, = Tff’(x)si nu,x dx. ... (11)
n=0 0

Uniqueness Theorem:
Let u(x, t) be twice continuously differentiable function of x, t. If u(x, t) satisfies
U = KUy, 0<x<l t>0,

the boundary conditions
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u(0,t) =u(l,t) =0, t>0,
the initial condition

u(x, 0) = f(x), 0<x<|
then the solution is unique.

Proof: Let there exists two different solutions u, (x, t) and u,(x, t). Let v(x,t) = u,(x, t) —
u, (x, t).

Our objective is to prove v(x, t) = 0.
Now, v(x, t) satisfies
U = ki, 0<x<l, t>0,
v(0,t) = v(l,t) =0, t=>0,
v(x,0) =0, 0<x<l

Let us consider the integral

!
J(t) = ikf v?dx...(12)

Differentiating (12) w.r.t t,

l l

l
fvvt dx = fkvvxx dx = fvvxx dx.
0

0

wlr—\
x| =

l
J'(t) = ikf v, dx =
0

Now,

! ! !
fvvxxdxzv.vx|(l)—fvx2dx=—fvxzdeO.

0 0 0
Si ncev(x,0) = 0,we havej(0) = 0.
- J(t) is non-increasing function of t and J(t) < J(0) = 0.
However, by definition J(t) = 0, J(t) = 0 forallt > 0.

Hence v(x,t) =0forall0 <x <[, t > 0.

Problems:
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Solve the following heat conduction problems:

1.
Uy = 4Uyy, 0<x<1, t >0,
u(0,t) =0 =u(1,¢), t>0,
u(x,0) =x?(1-x), 0<x<1
2.

U = ki, 0<x<l, t>0,

u(0,t) =0, u(l,t) =1, t>0,

X
u(x,0) =sin2—l, 0<x<l.

Books consulted:

IAN N. Sneddon, Elements of partial differential equations.

Tyn Myint-U, Lokenath Debnath, Linear Partial Differential Equations for Scientists
and Engineers.

3. K. Sankara Rao, Introduction to partial differential equations.

4. |.G. Petrovsky, Lectures on partial differential equations.

5. loannis P Stavroulakis, Stepan A Tersian, Partial differential equations.

50 Ranita Roy, Assistant Professor, Department of Mathematics, Serampore College



