Standard cost is an estimated cost determined by the company for the production of the goods and services or for performing an operation under normal circumstances and are derived by the company from the historical analysis of the data or from the time and the motion studies. Such costs pre-determined by the company are used as the target costs by the company for comparing it with actual costs, and the difference will the variance.

Advantages

- These costs are used by the management of the company for planning the process of future production and ways to increase the company's efficiencies.
- As the standard cost is calculated using the different statistical measures and the experiences of the management, so with the help of this measure management can innovate different new ways for producing the products which do not require the same type of the procedures and thereby reducing the cost of the company.
- It is used by the management in order to determine the reasonability of the actual costs of the period. Difference between the standard and the actual cost helps the management in knowing how close actual expenses matched with it expected to be and deciding the future course of action. For example, if the actual cost of the material is much higher then the management may investigate the reason for the excess cost.

Limitations

- The task of setting such cost of the production is difficult one as it requires a high degree of the technical skill of the person responsible for setting the same. Therefore it requires lots of effort and cost. Also, the conditions in any business enterprise keep on charging due to which standards to be have revised only a timely basis otherwise it will not be worth any more.
- The situations that would prevail in the future in any company or industry is not certain and different factors affects the company which makes it difficult to make the correct estimation of the standard cost of the production of goods or of provision of the services by a company as while calculating such costs, past experiences, as well as the future expense forecast, is required.
- It is not possible to fix these costs in every type of operation as such a system cannot be used in the industries that have no production of any of the standard products.

Standard Costing System

In accounting, a standard costing system is a tool for planning budgets, managing and controlling costs, and evaluating costmanagementperformance.

A standard costingsystem involves estimating the required costs of a production process. But before the start of the accounting period, determine the standards and set regarding the amount and cost of direct materials required for the production process and the amount and pay rate of direct labor required for the production process. In addition, these standards are used to plan a budget for the production process.

At the end of the accounting period, use the actual amounts and costs of direct material. Then utilize the actual amounts and pay rates of direct labor to compare it to the previously set standards. When you compare the actual costs to the standard costs and examine the variances between them, it allows managers to look for ways to improve cost control, cost management, and operational efficiency.

Advantages and Disadvantages of Standard Costing

There are both advantages and disadvantages to using a standard costingsystem. The primary advantages to using a standard costingsystem are that it can be used for product costing, for controlling costs, and for decision-making purposes.

Whereas the disadvantages include that implementing a standard costing system can be time consuming, labor intensive, and expensive. If the cost structure of the production process changes, then update the standards.

Problem 1:

Given for a factory:

Normal number of workers 100

Number of hours paid for in a week 80
Standard Rate of wages per hour Rs.1.60

Standard Output of the department
per hour taking into account normal idle time 40 units
In the first week of January 2003 it was ascertained that 2,000 units were produced despite 20% idle time due to power failure and actual rate of wages was Rs. 1.80 per hour. Calculate Labour Variances.

Solution

Analysis of Labour Cost Variance

	Labour Cost Variance	$\begin{aligned} & =(\text { SLC }- \text { ALC }) \\ & =\text { Rs. } 8,000-\text { Rs. } 14,400 \end{aligned}$	$\begin{gathered} R e \\ 6,400(\mathrm{~A}) \end{gathered}$
	Explained by :		
(i)	Labour Rate Variance$(S R-A R) \times A H$	$=($ Rs. $1.60-$ Rs. 1.80$) 8,000$	
		$=(-0.20) \times 8.000)$	1,600 (A)
(ii)	Labour Efficiency Variance	$\begin{aligned} & =(S H-A H) \times S R \\ & =(5,000-6,400) \times \text { Rs. } 1.60 \end{aligned}$	2,240 (A)
(iii)	Idle Time Variance = Idle	SR $=1,600 \times$ Rs. 1.60	2,560 (A)

Problem 2:

From the following data prepare a unit cost statement showing the prime cost of product A and B together with analysis of variances:

Product A

Material :	Standard	600 kgs . Rs. 5.00	90 kgs © Rs. 3.00
	Actual	580 kgs . Rs. 5.50	100 kgs . Rs. 2.50
Labour :	Labour	80 hours Rs. 2.00	16 hours © Rs. 2.80
	Actual	92 hours © Rs. 1.75	14 hours © Rs. 2.60

[Adapted-I.C.W.A. (Inter), June 1998]

Solution

Variance

(1)	Material Price Variance	Product A $\begin{aligned} & =\mathrm{AQ} \times(\mathrm{SP}-\mathrm{AQ}) \\ & =580 \times(\mathrm{Rs} .5-\mathrm{Rs} .5 .50) \\ & =580 \times 0.50 \\ & =\text { Rs. } 290(\mathrm{~A}) \end{aligned}$	Product B $\begin{aligned} & \mathrm{AQ} \times(\mathrm{SP}-\mathrm{AP}) \\ & =100 \times(3-2.80) \\ & =100 \times 0.20 \\ & =\text { Rs. } 20(\mathrm{~F}) \end{aligned}$
(2)	Material Usage Variance	$\begin{aligned} = & (\mathrm{SQ}-\mathrm{AQ}) \times \mathrm{SP} \\ & (600 \mathrm{kgs}-580 \mathrm{kgs} .) \times 5 \\ = & (20) \times 5 \\ = & 100(\mathrm{~F}) \end{aligned}$	$\begin{aligned} & (S Q-A Q) \times S P \\ & (90-100) \times \text { Rs. } 3 \\ & =\text { Rs. } 30(\mathrm{~A}) \end{aligned}$
(3)	Material Cost Variance	$\begin{aligned} & \text { (Price Variance - Usage } \\ & \quad \text { Varaince) } \\ & \text { Rs. } 290 \text { (A) - Rs. } 100 \text { (F) } \\ & =\text { Rs. } 190 \text { (A) } \end{aligned}$	```(Price Variance - Usage Varaince) Rs. 20 (F) - 30 (A) = Rs. }10\mathrm{ (A)```
(4)	Labour Rate Variance	$\begin{aligned} & (\text { SR }- \text { AR }) \times \text { AH } \\ & (\text { Rs. } 2-\text { Rs. } 1.75) \times 92 \\ & =\text { Rs. } 23.00(\mathrm{~F}) \end{aligned}$	$\begin{aligned} & (\mathrm{SR}-\mathrm{AR}) \times \mathrm{AH} \\ & (\text { Rs. } 2.80-\text { Rs. } 2.60) \times 14 \\ & =0.20 \times 14 \text { hours } \\ & =\text { Rs. } 2.80(\mathrm{~F}) \end{aligned}$
	Labour Efficiency Variance	$\begin{aligned} & (\mathrm{SH}-\mathrm{AH}) \times \mathrm{SR} \\ & (80 \mathrm{hrs} .-92 \mathrm{hrs.} \times \text { Rs. } 2 \\ & =\text { Rs. } 24(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & (\mathrm{SH}-\mathrm{AH}) \times \mathrm{SR} \\ & (16-14) \times 2.8 \\ & =\text { Rs. } 5.60(\mathrm{~F}) \end{aligned}$
(6)	Labour Cost Variance	Labour Rate Variance Labour Efficiency Variance Rs. 23 (F) - Rs. 24 (A) $=\operatorname{Re} 1.00$ (A)	Labour Rate Variance + Labour Efficiency Variance Rs. 2.80 (F) + Rs. 5.60 (F) $=$ Rs. 8.40 (F)

Cost Statement

Problem 3:

A gang of workers normally consists of 30 men, 15 women and 10 boys. They are paid at standard hourly rates as under:

	Re.
Men	0.80
Women	0.60
Boys	0.40

In a normal working week of 40 hours, the gang is expected to produce 2,000 units of output. During the week ending 31st December, 2002, the gang consisted of 40 men, 10 women and 5 boys. The actual wages paid were @ Re 0.70 , Re 0.65 and $\operatorname{Re} 0.30$ respectively. 4 hours were lost due to abnormal idle time and 1,600 units were produced.

Calculate:

(i) Wage Variance;
(ii) Wage Rate Variance;
(iii) Labour Efficiency Variance;
(iv) Labour Mix Variance; and
(v) Labour Idle Time Variance.

Solution

Workers	Standard			Actual		
	Hours	Rate (Rs.)	Amount (Rs.)	Hours	Rate (Rs.)	Amount (Rs.)
	1,200	0.80	960	1,600	0.70	1,120
Women	600	0.60	360	400	0.65	260
Boys	400	0.40	$\frac{160}{1,480}$	$\frac{200}{2,200}$	0.30	$\frac{60}{1,440}$

1. \quad Labour Cost Variance $=($ Actual Labour Cost - St. Labour Cost for Actual Output $)$

$$
=\text { Rs. } 1,440-\left(\frac{1,480}{2,000} \times 1,600\right)=\text { Rs. } 256(\mathrm{~A})
$$

2. Wage Rate Variance $=$ Actual Hours paid \times (Standard Rate - Actual Rate)

Men	$=1,600 \times(0.80-0.70)=$	$160(\mathrm{~F})$
Women	$=400 \times(0.60-0.65)=$	$20(\mathrm{~A})$
Boys	$=200 \times(0.30-0.40)=$	$20(\mathrm{~A})$

3. Labour Efficiency Variance $=$ St. Rate $\times(S t$. Hours - Actual Hours $)$

$$
\begin{aligned}
& =0.80 \times\left[\left(1,600 \times \frac{1,200}{2,000}\right)-1,600\right] \\
& =0.80 \times(960-1,600)=\text { Rs. } 512(\mathrm{~A}) \\
& =0.60 \times\left[\left(\frac{600}{2,000} \times 1,600\right)-400\right] \\
& =0.60 \times(480-400)=48(\mathrm{~F}) \\
\text { Women } & =0.40 \times\left(\frac{400}{2,000} \times 1,600\right)-200 \\
\text { Boys } & =0.40 \times(320-200)=\text { Rs. } 48(\mathrm{~F}) \\
& =\text { St. Rate } \times(\text { Actual time worked }- \text { Revised St. time }) \\
\text { 4. Labour Mix Variance } & =\text { Re. } 0.80 \times\left(1,440-\frac{1,980 \times 1,200}{2,220}\right) \\
\text { Men } & \equiv 0.80 \times(1,440-1,080)=\text { Rs. } 288(\mathrm{~A})
\end{aligned}
$$

Problem 4:

Calculate labour variances from the following data:

Gross direct wages Rs. 36,000
Standard hours produced 2,000
Standard rate per hour Rs. 15
Actual hours paid - 1,800 hours out of which hours not worked (abnormal idle time) are 50
Solution
(i) Labour Cost Variance $=$ Standard cost of labour - Actual cost of labour
$=(2,000 \times$ Rs. 15$)-(1,800 \times 20)$
$=$ Rs. $30,000-$ Rs. $36,000=$ Rs. $6,000(\mathrm{~A})$
(ii) Labour Rate Variance $=$ Actual Time \times (St. Rate - Actual Rate)
$=1,800 \times(15-20)=$ Rs. 9,000 (A)
(iii) Labour Efficiency Variance $=$ Standard Rate $\times(S T-A T)$
$=$ Rs. $15 \times(2,000-1,750)=$ Rs. $3,750(\mathrm{~F})$
(iv) Idle Time Variance $=$ Abnormal Time \times St. Rate
$=50 \times$ Rs. $15=750(\mathrm{~A})$ hours.

Problem 5:

From the following particulars calculate variable overhead expenditure variance:

Actual variable overhead expense
Budgeted variable overhead expense
Actual level of production
Normal capacity

Rs. 14,250
Rs. 17,000
8,000 Standard hours
10,000 Standard hours
[Adapted-I.C.W.A. (Inter)]

Solution

Variable Overhead Expenditure Variance $=S C-A C$
Standard Variable Overhead Expense $=$ Standard rate \times Actual output
Standard rate $=\frac{\text { Rs. } 17,000}{10,000}=$ Rs. 1.70 .
So, Standard Variable Overhead Cost $=8,000 \times$ Rs. $1 \cdot 70=$ Rs. 13,600
$\therefore \quad$ Variable Overhead Cost Variance $=S C-A C=$ Rs. $13,600-$ Rs. 14,250
$=650$ (Adverse)

Problem 6:

The standard cost card of a manufacturing concern includes the following particulars:
Variable overhead per unit - 2 hours @ $0-30$ p. per hour $=0-60 \mathrm{p}$.
Actual operating hours 8,000 hours
Actual variable overhead expenses Rs.2,600
Actual units produced 4,850
Calculate necessary cost variances.

Solution

We shall have to find out standard quantity and actual rate

$$
\begin{aligned}
& \text { Standard Quantity }=\frac{\text { Actual operating hours }}{\text { Standard hours per unit }}=\frac{8,000}{2}=4,000 \text { units } \\
& \text { Actual Rate } \quad=\quad \frac{\text { Actual overhead cost }}{\text { Standard hrs. worked }}=\frac{\text { Rs. } 2,600}{4,000}=0.65 \mathrm{p} \text {. }
\end{aligned}
$$

(i) Variable overhead cost variance $=\mathrm{SC}-\mathrm{AC}$

Standard Cost $=$ Actual Qnt. \times S.R. $=4,850 \times 0.60 \mathrm{p}=$ Rs. 2,910
Variable overhead cost variance $=$ Rs. 2,910 - Rs. 2,600 = 310 (F)
(ii) Variable overhead expenses variance $=$ Standard unit $\times(\mathrm{SR}-\mathrm{AR})$
$=4,000 \times(0.60-0.65)=$ Rs. $200(A)$
(iii) Variable overhead efficiency variance $=S R \times(A Q-S Q)$

$$
=0.60 \mathrm{p} \times(4,850-4,000)=\text { Rs. } 510(\mathrm{~F})
$$

Problem 7:

From the following particulars compute:
(a) Material cost variance
(b) Material price variance
(c) Material usage variance Quantity of materials purchased 3,000 units Value of materials purchased Standard quantity of materials Required per ton of output Standard rate of material Opening stock of materials Closing stock of materials Output during the year

Rs. 9,000
30 units
Rs. 2.50 per unit
Nil
500 units
80 tons
[Delhi U. B.Com. (Hons.)]

Solution

(a) Quantity of materials consumed : 3,000 units -500 units $=2,500$ units
(b) Actual cost of materials per unit $=\frac{\text { Rs. } 9,000}{3,000}=$ Rs. 3
(c) Standard material required per ton 30 units
(d) Standard material cost $=30 \times 80 \times$ Rs. $2.50=2,400 \times 2.50=$ Rs. 6,000

Actual cost
(i) Material Cost Variance
(ii) Material Price Variance
(iii) Material Usage Variance
$=2,500 \times$ Rs. $3=$ Rs. 7,500 .
$=S C-A C$
$=$ Rs. $6,000-$ Rs. $7,500=$ Rs. $1,500(\mathrm{~A})$
$=A Q \times(S R-A R)$
$=2,500 \times(2.50-3.00)=$ Rs. $1,250(\mathrm{~A})$
$=S R \times(S Q-A Q)$
$=$ Rs. $2.50 \times(2,400-2,500)$
$=$ Rs. $2.50 \times(-100)=250(\mathrm{~A})$

Reconciliation

$M C V=M P V+M U V \quad=1,500(A)=1,250(A)+250(A)$

