WEAK LAW OF LARGE NUMBERS AND ITS RELATED PROBLEMS

Presented
by
Mr. Pradip Panda
Asstt. Prof., Deptt. Of Statistics
Serampore College

STATEMENT: Let x_1, x_2, x_3, \dots be a sequence of random

variables having expectations $\mu_1, \mu_2, \mu_3, \dots$ Further,

let
$$V_n = Var(x_1 + x_2 + \dots + x_n)$$
. If $\frac{V_n}{n^2} \to 0$ as $n \to \infty$

then given any two (+)ve quantities ε and η however, small, we can find an n_0 , depending on ε and η such

that
$$P\left[\left|\frac{x_1 + x_2 + \dots + x_n}{n} - \frac{\mu_1 + \mu_2 + \dots + \mu_n}{n}\right| \le \varepsilon\right]$$

$$> 1 - \eta \ \forall n \ge n_0.$$

Since,
$$E\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) = \frac{\mu_1 + \mu_2 + \dots + \mu_n}{n}$$

and
$$Var\left(\frac{x_1 + x_2 + \dots + x_n}{n}\right) = \frac{V_n}{n^2}$$

U sin g Chebyshev's inequality

$$P\left[\left|\frac{x_1 + x_2 + \dots + x_n}{n} - \frac{\mu_1 + \mu_2 + \dots + \mu_n}{n}\right| \le t \frac{\sqrt{V_n}}{n}\right] > 1/\sqrt{t^2}$$

for any (+)ve t. Choo sin g t in such a way that $\frac{t\sqrt{V_n}}{n} = \varepsilon$.

Therefore, for any $\varepsilon > 0$,

$$P\left[\left|\frac{x_1 + x_2 + \dots + x_n}{n} - \frac{\mu_1 + \mu_2 + \dots + \mu_n}{n}\right| \le \varepsilon\right] > 1 - \frac{V_n}{n^2 \varepsilon^2}$$

Since, $\frac{V_n}{n^2} \to 0$ as $n \to \infty$, given $\eta.\varepsilon^2 > 0$ however small,

an n_0 is found depending on $\eta.\varepsilon^2$, such that $\frac{V_n}{n^2} < \eta \varepsilon^2$, $\forall n \not\geq n_0$.

For such an
$$n_0$$
, $P\left[\left|\frac{x_1+x_2+\ldots\ldots+x_n}{n}-\frac{\mu_1+\mu_2+\ldots\ldots+\mu_n}{n}\right| \le \varepsilon\right] > 1-\eta$ whenever $n \ge n_0$.

Bernoulli's Law of large numbers

STATEMENT

Let there be n trials of an event, each trial resulting in a success or failure. If X is the number of successes in n trials with constant probability p of success for each trial, then E(X)=np and Var(X)=npq, q=1-p. The variable X / n represents the proportion of successes or the relative frequency of successes and

$$E(\frac{X}{n}) = p \text{ and } Var(\frac{X}{n}) = \frac{Var(X)}{n^2} = \frac{pq}{n}.$$

Then,
$$P\left[\left|\frac{X}{n} - p\right| < \varepsilon\right] \to 1 \text{ as } n \to \infty \implies P\left[\left|\frac{X}{n} - p\right| \ge \varepsilon\right] \to 0 \text{ as } n \to \infty$$

for any assigned $\varepsilon > 0$. This implies that $\frac{X}{n}$ converges in probability to p as

$$n \to \infty$$
.

Applying Chebyshev's inequality to the variable $\frac{X}{n}$ for any $\varepsilon > 0$,

it is found that,
$$P\left[\left|\frac{X}{n} - E(\frac{X}{n})\right| \ge \varepsilon\right] \le \frac{Var(\frac{X}{n})}{\varepsilon^2} = \frac{pq}{n\varepsilon^2} \le \frac{1}{4n\varepsilon^2}$$

Since, the max value of pq is at $p = q = \frac{1}{2}$, i.e. $\max(pq) = \frac{1}{4}$ i.e. $pq \le \frac{1}{4}$.

Since,
$$\varepsilon$$
 is arbitrary therefore $P\left[\left|\frac{X}{n}-p\right| \ge \varepsilon\right] \to 0$ as $n \to \infty$

$$\Rightarrow P\left[\left|\frac{X}{n} - p\right| < \varepsilon\right] \to 0 \text{ as } n \to \infty$$

Central Limit Theorem

If X_i (i=1,2,...,n) be independent random variables such that $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$, then under certain very general conditions, the random variable $S_n = X_1 + X_2 + + X_n$ is assymptotically normal with mean μ and s tan dard deviation

$$\sigma$$
. Where, $\mu = \sum_{i=1}^{n} \mu_i$ and $\sigma^2 = \sum_{i=1}^{n} \sigma_i^2$.

De – Moivre's Laplace theorem

If $X_i = 1$ with probability p = 0 with probability q = 1 - p (i = 1, 2, ..., n)
then the distribution of the random variable $S_n = X_1 + X_2 + + X_n, \text{ where } X_i \text{ 's are independent,}$ is assymptotically normal as $n \to \infty$.

Lindeberg Levy Central Limit theorem

If X_i (i=1,2,...,n) be independent random variables such that $E(X_i) = \mu_1$ and $Var(X_i) = \sigma_1^2$, then the sum $S_n = X_1 + X_2 + + X_n$ is assymptotically normal with mean $\mu = n\mu$ and variance $\sigma^2 = n\sigma_1^2$.

Liapounoff's Central Limit theorem

If X_i (i=1,2,...,n) be independent random variables such that $E(X_i) = \mu_i$ and $Var(X_i) = \sigma_i^2$. Let, the third order absolute moment, $say \rho_i^3$ of X_i about its mean exists i.e. $\rho_i^3 = E[X_i - \mu_i]^3$

$$i = 1, 2, ..., n \text{ is finite. Further let } \rho^3 = \sum_{i=1}^n \rho_i^3.$$

If $\lim n \to \infty$ $\frac{\rho}{\sigma} = 0$, then the sum $X = X_1 + X_2 + \dots + X_n$ is assymptotically normal with mean μ and s tan dard deviation σ . Where, $\mu = \sum_{i=1}^{n} \mu_i$ and $\sigma^2 = \sum_{i=1}^{n} \sigma_i^2$.

PROBLEM:

- a) Let X_i assume the values i and (-i) with equal probabilities. Show that the law of l arg e numbers can not be applied to the independent variables X_1 , $X_2,....i.e.$ X_i 's.
- b) Let X_i can have only two values i^{α} and $(-i^{\alpha})$ with equal probabilities. Show that the law of l arge numbers can be applied to the independent variables X_i ,

$$X_2,....if \ \alpha < \frac{1}{2}.$$

PROOF: a) Here,
$$P[X_i = i] = \frac{1}{2} = P[X_i = -i]$$

$$E(X_i) = i \cdot \frac{1}{2} - i \cdot \frac{1}{2} = 0 \ \forall i; i = 1, 2, \dots$$

$$V(X_i) = E(X_i^2) = i^2 \cdot \frac{1}{2} + (-i)^2 \cdot \frac{1}{2} = i^2 \ \forall i; i = 1, 2, \dots$$

$$B_n = V(\sum_{i=1}^n X_i) = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\therefore \frac{B_n}{n^2} \to \infty \text{ as } n \to \infty.$$

Hence, law of large numbers does not hold.

b) Here,
$$P[X_i = i^{\alpha}] = \frac{1}{2} = P[X_i = -i^{\alpha}]$$

$$E(X_i) = i^{\alpha} \cdot \frac{1}{2} - i^{\alpha} \cdot \frac{1}{2} = 0 \ \forall i; i = 1, 2, \dots$$

$$V(X_i) = E(X_i^2) = i^{2\alpha} \cdot \frac{1}{2} + (-i^{\alpha})^2 \cdot \frac{1}{2} = i^{2\alpha} \ \forall i; i = 1, 2, \dots$$

$$B_{n} = V(\sum_{i=1}^{n} X_{i}) = \sum_{i=1}^{n} i^{2\alpha} = 1^{2\alpha} + 2^{2\alpha} + \dots + n^{2\alpha} \cong \int_{0}^{n} x^{2\alpha} dx$$
 From Euler Maclaurin's formula.

$$\cong \left[\frac{x^{2\alpha+1}}{2\alpha+1}\right]_0^n = \frac{n^{2\alpha+1}}{2\alpha+1}$$

$$\therefore \frac{B_n}{n^2} = \frac{n^{2\alpha - 1}}{2\alpha + 1} \to 0 \text{ if } 2\alpha - 1 < 0 \Rightarrow \alpha < \frac{1}{2}. \text{ Hence, the result.}$$

PROBLEM:

Let $\{X_k\}$ be mutually independent and identically distributed random variables with mean μ and finite variance. If $S_n = X_1 + X_2 + \dots + X_n$, prove that the law of l arge numbers does not hold for the sequence $\{S_n\}$

PROOF:

The variables now are S_1, S_2, \dots, S_n .

$$B_n = V(S_1 + S_2 + \dots + S_n)$$

$$=V\{X_1+(X_1+X_2)+(X_1+X_2+X_3)+.....+(X_1+X_2+.....+X_n)\}$$

$$= V\{nX_1 + (n-1)X_2 + (n-2)X_3 + \dots + X_n\}$$

$$= n^{2}V(X_{1}) + (n-1)^{2}V(X_{2}) + (n-2)^{2}V(X_{3}) + \dots + V(X_{n})$$

Let,
$$V(X_i) = \sigma^2 \ \forall i.$$
 : $B_n = (1^2 + 2^2 + \dots + n^2).\sigma^2$

$$\therefore \frac{B_n}{n^2} = \frac{(n+1)(2n+1)}{6n} \sigma^2 \to \infty \text{ as } n \to \infty.$$

Hence, law of l arg e numbers does not hold for the sequence $\{S_n\}$.

PROBLEM:

Exa min e whether the law of l arg e number holds for the sequence $\{X_k\}$ of independent random variables defined as follows

$$P[X_k = \pm 2^k] = 2^{-(2k+1)}$$

$$P[X_k = 0] = 1 - 2^{-2k}$$

PROOF:

$$E(X_k) = 2^k \cdot 2^{-(2k+1)} + (-2)^k \cdot 2^{-(2k+1)} + 0 \cdot (1 - 2^{-2k}) = 0$$

$$E(X_k^{2}) = 2^{2k} \cdot 2^{-(2k+1)} + (-2)^{2k} \cdot 2^{-(2k+1)} + 0 \cdot (1 - 2^{-2k}) = 1$$

$$V(X_k) = E(X_k^2) - E^2(X_k) = 1.$$

$$B_n = V(\sum_{i=1}^n X_i) = \sum_{i=1}^n V(X_i) = n.$$
 : X_i 's are independent, $i = 1, 2, \dots, n$

$$\therefore \frac{B_n}{n^2} = \frac{1}{n} \to 0 \text{ as } n \to \infty.$$

Hence, law of l arg e number holds for the sequencé of $r.v.\{X_k\}$.

Thank you.....