

Types of El	ectronic Transitions in TM Complexes
d-d:	usually in the visible region relatively weak, $\mathcal{E} \sim 1 - 100$ if spin allowed < 0.1 if spin forbidden energy varies with Δ_o (or Δ_t)
LMCT:	Ligand to Metal Charge Transfer $\sigma_L \text{ or } \pi_L \xrightarrow{hv} d^*$ very intense, generally in UV or near UV
MLCT:	Metal to Ligand Charge Transfer d*— ^{hυ} →π _L very intense (ε ~ 100 – 10,000) needs π-acceptor Ligand (CO, CN⁻, …
LL:	Ligand to Ligand $\pi_{L} \xrightarrow{h_{U}} \pi_{L}^{*}$ very intense ($\varepsilon \sim 100 - 10,000$)
Rydberg:	localized MO high energy, highly delocalized, deep UV

					d orbita	ls	: z ² ,	x ² .	·y²,	xy,	xz, yz	
	E	8C3	6C2	6C4	3C ₂ =(C ₄) ²	i	6S4	8S6	3ơh	6σd	linear, rotations	quadratic
A1g	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}+z^{2}$
A _{2g}	1	1	-1	-1	1	1	-1	1	1	-1		
Eg	2	-1	0	0	2	2	0	-1	2	0		(2z ² -x ² -y ² , x ² -y ²)
T _{1g}	3	0	-1	1	-1	3	1	0	-1	-1	(Rx, Ry, Rz)	
T _{2g}	3	0	1	-1	-1	3	-1	0	-1	1		(xz, yz, xy)
A _{1u}	1	1	1	1	1	-1	-1	-1	-1	-1		
A ₂ u	1	1	-1	-1	1	-1	1	-1	-1	1		
Eu	2	-1	0	0	2	-2	0	1	-2	0		
T1u	3	0	-1	1	-1	-3	-1	0	1	1	(x. y. z)	
T _{2u}	3	0	1	-1	-1	-3	1	0	1	-1		
ר: b	۲ł Du	ner It ti	e a her	re e a	only 5 are 6 qu	d- Ja	or dra	bita atic	als :s!	,	No ev 2z ²	o d-orbital er $x^2 + y^2 +$ $-x^2 - y^2 \equiv 0$

linear
E 8C ₃ 3C ₂ 6S ₄ 6σ _d rotations quadratic
A ₁ 1 1 1 1 1 $x^{2}+y^{2}+z^{2}$
A2 1 1 1 -1 -1
E 2 -1 2 0 0 $(2z^2-x^2-y^2, x^2-y^2)$
T ₁ 3 0 -1 1 -1 (R _x , R _y , R _z)
T ₂ 3 0 -1 -1 1 (x, y, z) (xy, xz, yz)

d Orbital Spli	ttings vs. Ligand	Field Symmetry					
O _h (octahedral)	D _{4h} (tetragon. elong.)	C _{4ν} (sq. pyram.)					
e _g z ² , x ² -y ² t _{2g} xy,xz,yz	b _{1g} x ² -y ² a _{1g} z ² b _{2g} xy e _g xz, yz	b ₁ x ² -y ² a ₁ z ² b ₂ xy e xz, yz					
T _d (tetrahedral)	D _{4h} (sq. planar)	D _{3h} (trig. bipyram.)					
— — t ₂ xy,xz,yz — e z ² , x ² –y ²	b _{1g} x ² -y ² b _{2g} xy a _{1g} z ² e _g xz, yz xy, z ² , (xz yz) energies can switch	— a' ₁ z ² — e' x ² -y ² , xy — e'' xz, yz					

		Т	ABLE 9.1	7	100	
	CRYSTAL FIELD (All	AND NEPHELAU spin-paired; 10	Dq, B and	C in wave	FOR d ⁶ COI mumbers)	MPLEXES
	Complex	10 Dq	B	β	C	C/B(y
10Dq = ∆	Fe(o-phen)2+	13,110	602	0.68		10.00
	Fe(CN)4-	32,200	490	0.55		
	Fe(CNO)4-	27,000	410	0.46		
	Ru(HnO)2+	19,800	475	0.76		
	Ruen ²⁺	28,100	420	0.68		
	Rudien2+	28,800	430	0.69		
	Co(CN)	32,200	400	0.36		
	Codtpa	14,200	400	0.36	1620	4.05
	Co(NHa)3+	22,870	615	0.56	3090	5.02
	Coen ³⁺	23,160	590	0.53	2900	4.91
	Co(CNO)3-	26,100	450	0.405		
	Co(HrO)	20,760	510	0.46	4260	8.36
	Cooxa-	18,020	540	0.49		
	Rh(NHa)	34,000	430	0.60		
	Rh(SCN)	~20,300				18
	Rh(CN)a-	~ 45,500				
	RhF ³ -	23,300	460	0.64	~ 1850	4.0
	RhCla-	20,400	350	0.49		
	RhBra-	19,000	290	0.40		
	Rhdtpa	21,900	210	0.29		
	Ir(NH3)S+	41,200	470	0.71		
	IrCla-	25,000	300	0.46		
	Irens+	~ 41,400				
	ir(NHs)sHrO3+	40,400	550	0.83		
	Irdtps	26,700	160	0.24		
	Irdsepa	25,000	135	0.20		
	PrE-	33,000	380	0.53		

Origin of Forbidden Transition Intensities
1. Spin Forbidden Transitions due to "Spin-Orbit Couple
Angulan Momentum of "spinning"
$$e^-$$
 can couple
with Angulan Momentum of e^- "moving" in
orbital. = Magnetic moment coupling
 $\vec{J} = \vec{L} + \vec{S} = \text{constant}$
 $\vec{f} = \vec{f}$
 $f = constant$
 f

Vibronic Coupling Selection Rules

$$f \propto \left| \int \Psi_{el_{xs}}^{*} \Psi_{vib_{xs}}^{*} \widehat{M} \Psi_{el_{rs}} \Psi_{vib_{rs}} d\tau \right|^{2}$$

$$So, \ does \ \text{this integral (in red)} \neq 0 ?$$

$$\int_{xs}^{rel} \int_{xs}^{vib} x \widehat{M} \times \int_{rs}^{rel} \int_{rs}^{vib} \text{ contain } A_{rs} ?$$

$$\int_{xs}^{r} \int_{xs}^{r} \int_{rs}^{r} \int_{rs}^{r}$$

