Paper-Eight

Module-XV
Full Marks-25
Time-1hr
Date-23.04.2020

Answer any two from Q. No. 1 to 4:

1. a) Write down the differences between Compiler and Interpreter.
b) Convert the hexadecimal no. (B16A.D4) ${ }_{16}$ into equivalent octal number.
c) Evaluate $(1110.1001)_{2}-(1010.011)_{2}$ using 2 's complement method.
d) What will be the value of $\operatorname{sum}(10)$ if the following program segment is executed?
```
int sum(int n)
{
        int i,c=0;
        for(i=1;i<=n;i++){
            if(i%3==0)
            c=c+i++;
        }
return(c);
}
```

2. a) Write a flow-chart to obtain the maximum of n given real numbers.
b) Write a program to compute and display the sum of all integers lying between 0 to 100 that are divisible by 4 but not divisible by 6 . Also display the count and value of all such integers.
3. a) Write a program to read a 3×3 matrix A from the keyboard. Display the trace of A and the sums of each row and each column of the matrix.
b) Find the error(s), if any in the following program segment:
\{
float $a=3.5, b=2$;
int $\mathrm{l}=10, \mathrm{~m}=5, \mathrm{n}=9$;
printf("\%f",a\%b);
printf("\%d", ($1+\mathrm{m}>\mathrm{n} \& \& 1 \% \mathrm{~m}==0)$);
\}
c) Write down the output of the following program segment.
int $\mathrm{i}=0, \mathrm{~m}, \mathrm{n}=37246$, d ;
while ($n>0$)
\{
printf("\%d",n);
$\mathrm{m}=\mathrm{n}$;
while $(m>0)$
\{
$\mathrm{d}=\mathrm{m} \% 10$;
i++;
```
                m=m/10;
            }
            n=n-d*pow(10,(i-1));
            i=0;
}
}
```

4. a) Write an algorithm to print the numbers which are divisible by 3 among the first m numbers of the following sequence
$1,1,2,3,5,8,13,21, \ldots$
4
b) Write an efficient C program to find a real root of the following equation by Bisection Method:
$x^{x}+0.2 \log _{10}\left(x^{2}+1\right)-3.4=0$.
Answer any one from Q. No. 5 and 6:
5. a) Using the laws of Boolean Algebra, simplify the expression
$x . y+(x . z)^{\prime}+x . y^{\prime} \cdot z \cdot(x . y+z)$
b) Define max term. Write down the function $(x+y+z) \cdot\left(x \cdot z+x^{\prime} \cdot y\right)^{\prime}$ as product of max terms.

4
6. a) Design a switching circuit connecting two wall switches and a light bulb in such a way that either switch may be used to control the light independently of the state of the other. 4
b) Convert $(a+b+c) \cdot\left(a^{\prime}+b^{\prime}+c\right) \cdot\left(a+b^{\prime}+c^{\prime}\right) \cdot\left(a^{\prime}+b+c^{\prime}\right)$ from FCNF to FDNF. 3

